To achieve urban sustainability, it is critical to enhance the environment, economy, and society simultaneously. This study adopted the revised genuine progress indicator (GPI) and ecological footprint (EF) to evaluate the ecological efficiency and economic sustainability of the Yangtze River Delta from 2000 to 2018. Spatial analysis was utilized to identify spatial autocorrelation. A total of 27 cities were then partitioned through k-means cluster analysis. The results showed that GPI and ecological efficiency improved rapidly, but economic sustainability showed a downward trend. GPI and GDP had a high degree of spatial correlation, especially in Suzhou-Wuxi-Changzhou Metropolitan Area. However, no spatial correlation existed between GPI and EF. The city with high GEE can reach 3000 $/gha, indicating the city consumed 1 global hectare to create $3000 of genuine economic growth. Shanghai, Hangzhou, and Taizhou were cities with the highest level of economic sustainability and ecological efficiency. The spatiotemporal characteristics of economic sustainability and ecological efficiency revealed in this study will provide theoretical guidance for alleviating ecological pressure and promoting economic sustainable development.
Environmental Science and Pollution Research - Erhai Lake is the second largest freshwater lake in Yunnan Province but suffers from the deterioration of water quality and agricultural non-point... 相似文献
Along with the increasing utilization of engineered nanoparticles, there is a growing concern for the potential environmental and health effects of exposure to these newly designed materials. Understanding the behavior of nanoparticles in the environment is a basic need. The present study aims to investigate the distribution and fate of ceria nanoparticles in an aquatic system model which consists of sediments, water, hornworts, fish and snails, using a radiotracer technique. Concentrations of ceria in the samples at regular time intervals were measured. Ceria nanoparticles were readily removed from the water column and partitioned between different organisms. Both snail and fish have fast absorption and clearance abilities. Hornwort has the highest bioaccumulation factors. At the end of the experiment, sediments accumulated most of the nanoparticles with a recovery of 75.7 ± 27.3% of total ceria nanoparticles, suggesting that sediments are major sinks of ceria nanoparticles. 相似文献
The study aims to compare the detection of 16S rRNA gene of Dehalococcoides species and the microcosm study for biotransformation in predicting reductive dechlorination of chlorinated ethenes in ground water at hazardous waste sites. A total of 72 ground water samples were collected from 12 PCE or TCE contaminated sites in the United States. The samples were analyzed and used to construct microcosms in the laboratory. The results showed that the presence of Dehalococcoides DNA was well associated with dechlorination to ethene in the field. Nearly half of the wells where Dehalococcoides DNA was detected had ethene as a dechlorination end product. In comparison, for ground water samples of 16 wells where ethene was detected, ethene was produced in 11 of the corresponding microcosms. For most microcosms, during two years of incubation, dechlorination was less extensive than that observed in the field. 相似文献
In this study, MnO2 and pyrolusite were used as the catalysts to prepare modified activated carbon, that is, AC-Mn and AC-P, respectively, from coals by blending method and steam activation. The Brunauer–Emmett–Teller (BET) results indicated that the AC-P had higher surface areas and micropore volumes than the AC-Mn with the same blending ratio. The relative contents of basic functional groups (i.e., C = O, π-π*) on AC-P were slightly lower than those on AC-Mn, while both contained the same main metal species, namely, MnO. The desulfurization results showed that with 3 wt% of blending ratio, AC-Mn3 and AC-P3 had higher sulfur capacities at 220 and 205 mg/g, respectively, which were much higher than for the blank one (149.6 mg/g). Moreover, the AC-P had relatively higher sulfur capacity than the AC-Mn with the same contents of Mn, which might be attributed to the existence of other metals in pyrolusite. After the desulfurization process, MnO were gradually transferred into MnSO4, and the relative contents of basic functional groups decreased evidently for both AC-Mn3 and AC-P3. The results demonstrated that pyrolusite could be one good alternative to MnO2 to prepare modified activated carbon for desulfurization.
Implications: MnO2 and pyrolusite were used as the additives to prepare modified activated carbon from coals by a blending method and by steam activation, that is, AC-Mn and AC-P, respectively. The AC-P had higher surface areas and micropore volumes than the AC-Mn with the same blending ratio. The AC-Mn and AC-P had higher sulfur capacities than a blank one. Moreover, the AC-P had relatively higher sulfur capacity than the AC-Mn with the same contents of Mn. The results demonstrated that pyrolusite could be one good alternative to MnO2 to prepare modified activated carbon for desulfurizatio. 相似文献