首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
环保管理   1篇
综合类   5篇
基础理论   2篇
污染及防治   2篇
评价与监测   1篇
  2017年   1篇
  2015年   2篇
  2010年   1篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  1995年   1篇
  1993年   1篇
排序方式: 共有11条查询结果,搜索用时 0 毫秒
11.
Branching growth is present both in plants and animals, either marine or terrestrial. Although cellular and other modular levels of organization in plants and animals have evolved through different molecular and physiological mechanisms, several aspects of their branching modular system and morphology are similar. We studied vessel organization and colony integration, in order to comprehend underlying relationships between different structural components in a gorgonian coral network. The theoretical formalism was validated in the gorgonian coral Eunicea mammosa (Plexauridae, Octocorallia) in Belize. As in vascular plants, these colonial animals create a complex network of connections among modular branches integrated in stem canals downstream toward the base. A new formalism is proposed for describing gorgonian branching. A global property of a colony is for instance the size of its base or its weight whereas a local property is the size of branch in a particular place of the colony. However, a global property is not the simple addition of local modular properties, as the case of stem canals in the colony base. Theoretically, the process of branching is tightly intertwined with the internal network organization. The colony network centralization is driven by a linear relationship between the total number of branches and the stem canals at the base of the colony. If stem canals play important roles in the transport of nutrients throughout the colony and the biomechanical support from the base up to the tips, we can assume that there is an underlying association between the number of stem canals at the base and the number of for example, terminal branches. These associations may provide new findings that extend our understanding of the functional organization of tree-like networks in octocorals and their vascular systems. The idea that the external components of a tree-like plant network are directly correlated and connected down to the main trunk seems to be analogous in an animal system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号