首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1351篇
  免费   62篇
  国内免费   216篇
安全科学   80篇
废物处理   76篇
环保管理   133篇
综合类   394篇
基础理论   300篇
污染及防治   460篇
评价与监测   91篇
社会与环境   67篇
灾害及防治   28篇
  2024年   3篇
  2023年   11篇
  2022年   53篇
  2021年   26篇
  2020年   47篇
  2019年   32篇
  2018年   83篇
  2017年   33篇
  2016年   47篇
  2015年   68篇
  2014年   55篇
  2013年   99篇
  2012年   66篇
  2011年   103篇
  2010年   62篇
  2009年   77篇
  2008年   74篇
  2007年   102篇
  2006年   72篇
  2005年   46篇
  2004年   77篇
  2003年   69篇
  2002年   52篇
  2001年   101篇
  2000年   39篇
  1999年   24篇
  1998年   14篇
  1997年   9篇
  1996年   23篇
  1995年   10篇
  1994年   10篇
  1993年   5篇
  1992年   8篇
  1991年   6篇
  1990年   5篇
  1989年   4篇
  1988年   6篇
  1987年   1篇
  1986年   1篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
  1964年   1篇
  1960年   1篇
  1951年   1篇
排序方式: 共有1629条查询结果,搜索用时 15 毫秒
131.
建立环境信息共享平台,使环境管理数据实现共享,实现各类数据及时的关联,是环境管理工作发展的必然趋势,将为环境管理提供强有力的技术支撑.信息共享平台利用了大型数据库在性能、安全性、可靠性、数据一致性、分布式处理等方面的优势,将各主要环境业务部门的统计、收费、审批、监测等数据集中管理起来,数据管理人员、各级领导、业务部门员工通过统一的Web界面进行管理、查询分析大量的环境数据,从而简化环境数据管理的难度,提高环境数据管理的水平,大大方便用户对环保数据的访问,提高了数据利用效率.  相似文献   
132.
天然硅藻土作为吸附材料处理渗滤液的效果研究   总被引:2,自引:0,他引:2  
利用天然硅藻土在静态条件下对垃圾渗滤液中的氨氮和COD的吸附效果进行了研究。结果表明:天然硅藻土对于氨氮的去除效率只有14.1%;但对COD的去除效率可以达到70.1%;天然硅藻土对于COD的饱和吸附量和吸附速度明显高于其对氨氮的饱和吸附量及吸附速度;在平衡浓度相当高的情况下,每克硅藻土具有吸附65.31mg COD的极限潜力。  相似文献   
133.
The present study elucidated the biomagnification profiles of persistent organic pollutants (POPs) through a tropical aquatic food web of Vietnam based on trophic characterization using stable nitrogen analysis. Various biological samples collected from the main stream of the Mekong Delta were provided for the analysis for both POPs, and stable nitrogen and carbon isotope ratios. Of the POPs analyzed, dichlorodiphenyltrichloroethane and its metabolites (DDTs) were the predominant contaminants with concentrations ranging from 0.058 to 12 ng/g wet weight, followed by polychlorinated biphenyls (PCBs) at 0.017-8.9 ng/g, chlordane compounds (CHLs) at 0.0043-0.76 ng/g, tris-4-chlorophenyl methane (TCPMe) at N.D.-0.26 ng/g, hexachlorocyclohexane isomers (HCHs) at N.D.-0.20 ng/g and hexachlorobenzene (HCB) at 0.0021-0.096 ng/g. Significant positive increases of concentrations in DDTs, CHLs, and TCPMe against the stable nitrogen ratio (delta(15)N) were detected, while, concentrations of HCHs and HCB showed no significant increase. The slopes of the regression equations between the log-transformed concentrations of these POPs and delta(15)N were used as indices of biomagnification. The slopes of the POPs for which positive biomagnification was detected ranged from 0.149 to 0.177 on a wet weight basis. The slopes of DDTs and CHLs were less than those reported for a marine food web of the Arctic Ocean, indicating that less biomagnification had occurred in the tropical food web. Of the isomers of CHLs, unlike the studies of the Arctic Ocean, oxychlordane did not undergo significant biomagnification through the food web of the Mekong Delta. This difference is considered to be due to a lack of marine mammals, which might metabolize cis- and trans-chlordane to oxychlordane, in the Mekong Delta ecosystem. The biomagnification profile of TCPMe is reported for the first time in the present study.  相似文献   
134.
Chen H  Chen S  Quan X  Zhao H  Zhang Y 《Chemosphere》2008,73(11):1832-1837
Sorption of nonpolar (phenanthrene and butylate) and polar (atrazine and diuron) organic chemicals to oil-contaminated soil was examined to investigate oil effects on sorption of organic chemicals and to derive oil–water distribution coefficients (Koil). The resulting oil-contaminated soil–water distribution coefficients (Kd) for phenanthrene demonstrated sorption-enhancing effects at both lower and higher oil concentrations (Coil) but sorption-reducing (competitive) effects at intermediate Coil (approximately 1 g kg−1). Rationalization of the different dominant effects was attempted in terms of the relative aliphatic carbon content which determines the accessibility of the aromatic cores to phenanthrene. Little or no competitive effect occurred for butylate because its sorption was dominated by partitioning. For atrazine and diuron, the changes in Kd at Coil above approximately 1 g kg−1 were negligible, indicating that the presently investigated oil has little or no effect on the two tested compounds even though the polarity of the oil is much less than soil organic matter (SOM). Therefore, specific interactions with the active groups (aromatic and polar domains) are dominantly responsible for the sorption of polar sorbates, and thus their sorption is controlled by available sorption sites. This study showed that the oil has the potential to be a dominant sorptive phase for nonpolar pollutants when compared to SOM, but hardly so for polar compounds. The results may aid in a better understanding of the role of the aliphatic and aromatic domains in sorption of nonpolar and polar organic pollutants.  相似文献   
135.
In landfill, high temperature levels come from aerobic reactions inside the waste surface layer. They are known to make anaerobic processes more reliable, by partial removal of easily biodegradable substrates. Aerobic biodegradation of the main components of biodegradable matter (paper and cardboard waste, food and yard waste) is considered. In this paper, two models which take into account the effect of moisture on aerobic biodegradation kinetics are discussed. The first one (Model A) is a simple, first order, substrate-related model, which assumes that substrate hydrolysis is the limiting step of the process. The second one (Model B) is a biomass-dependant model, considering biological growth processes. Respirometric experiments were performed in order to evaluate the efficiency of each model. The biological oxygen demands of shredded paper and cardboard samples and of food and yard waste samples prepared at various initial water contents were measured. These experimental data were used to identify model parameters. Model A, which includes moisture dependency on the maximum amount of biodegraded matter, is relevant for paper and cardboard biodegradation. On the other hand, Model B, including moisture effect on the growth rate of biomass is suitable to describe food and yard waste biodegradation.  相似文献   
136.
A coupled fuzzy vertex and factorial-analysis approach was developed in this study for systematically characterizing effects of uncertainties in a municipal solid waste composting process. A comprehensive composting process model was also embedded into the system framework and used to address substrate decomposition and biomass growth, as well as the interactions between moisture contents, temperatures, and oxygen concentrations. The applicability of the proposed method was verified through a custom-made pilot-scale composting system. Results from fuzzy simulation indicated that the fuzzy vertex method could effectively communicate implicit knowledge into dynamic simulations and thus provide valuable information for enhancing composting process control under uncertainty. The factorial analysis was effective in quantifying the proportion to which the uncertainty of each single or interactive effect of model parameters contributes to the overall uncertainty of the system outcomes. Thus, sensitive parameters that may lead to errors or unreasonable predictions can be determined. The proposed study system could not only be used in characterizing combined effects of uncertainties for composting processes, but was also applicable to many other environmental modelling systems.  相似文献   
137.
It is vitally important to define the critical condition for a receiving water body in the total maximum daily load (TMDL) development process. One of the major disadvantages of using a continuous simulation approach is that there is no guarantee that the most critical condition will be covered within the subjectively selected representative hydrologic period, which is usually several years depending on the availability of data. Another limitation of the continuous simulation approach, compared to a design storm approach, is the lack of an estimate of the risk involved. Because of the above limitations, a storm event-based critical flow-storm (CFS) approach was previously developed to explicitly address the critical condition as a combination of a prescribed stream flow and a storm event of certain magnitude, both having a certain frequency of occurrence and when combined, would create a critical condition. The CFS approach was tested successfully in a TMDL study for Muddy Creek in Virginia. The present paper reports results of a comparative study on the applicability of the CFS approach in Taiwan. The Dy-yu creek watershed in northern Taiwan differs significantly from Muddy Creek in terms of climate, hydrology, terrain, and other characteristics. Results show that the critical condition for different watersheds might be also different, and that the CFS approach could clearly define that critical condition and should be considered as an alternative method for TMDL development to a continuous simulation approach.  相似文献   
138.
Chiral pesticides are ubiquitous in the aquatic environment, and their enantioselectivities in aquatic toxicity are known to be complicated. The difference in enantioselective effects between enantiomers may sometimes differ by approximately 100-fold or more, which makes it important to incorporate enantioselective effects into the risk assessment of chiral pesticides. In this paper, we reviewed relevant work on the aquatic toxicity of chiral pesticides with an emphasis on the enantioselective aquatic toxicity under both chronic and acute exposure conditions. We provided a personal account of the importance of studies on molecular mechanisms of developmental toxicity and specific endpoints such as vitellogenin, yolk sac edema and pericardial edema in future research. Given the widespread use of chiral pesticides, we suggest that a more comprehensive understanding of the significance of enantioselective aquatic toxicity will be very helpful in improving risk assessment and regulation of chiral pesticides.  相似文献   
139.
Low impact development best management practices (LID-BMPs) are considered to be cost-effective measures for mitigating the water quantity and quality impact of urban runoff. Currently, there are many types of LID-BMPs, and each type has its own intrinsic technical and/or economical characteristics and limitations for implementation. The selection of the most appropriate BMP type(s) for a specific installation site is therefore a very important planning step. In the present study, a multi-criteria selection index system (MCIS) for LID-BMP planning was developed. The selection indexes include 12 first-level indices and 26 second-level indices which reflect the specific installation site characteristics pertaining to site suitability, runoff control performance, and economics of implementation. A mechanism for ranking the BMPs was devised. First, each individual second-level index was assigned a numeric value that was based on site characteristics and information on LID-BMPs. The quantified indices were normalized and then integrated to obtain the score for each of the first-level index. The final evaluation scores of each LID-BMP were then calculated based on the scores for the first-level indices. Finally, the appropriate BMP types for a specific installation site were determined according to the rank of the final evaluation scores. In order to facilitate the application of the MCIS BMP ranking system, the computational process has been coded into a software program, BMPSELEC. A case study demonstrating the MCIS methodology, using an LID-BMP implementation planning at a college campus in Foshan, Guangdong Province, is presented.  相似文献   
140.
Soil and sediment samples from several intertidal environment exposed to different types of contamination were studied to investigate the importance of grain size in relation to the capacity of the substrates to retain trace metals. The unfractionated samples (referred to as bulk samples) were separated into the following grain/size fractions: fine–coarse sand (2?0.100 mm), very fine sand (0.100?0.050 mm), silt (0.050?0.002 mm), and clay (0.002 mm). The sample into its fractions was carried out was in a glove box under high-purity N2 atmosphere in order to minimize any alterations to the samples. The bulk samples were characterized in terms of physicochemical properties such as pH, redox potential, and grain size. The total organic carbon (TOC), total sulfur (S), iron (Fe) pyrite, Fe, and manganese (Mn), and trace metals lead (Pb), mercury (Hg), chromium (Cr), and nickel (Ni) were analyzed in the bulk samples and in each fraction. The sand fractions were also examined by scanning electron microscopy (SEM). Comparisons of the above parameters were made between fractions and between each fraction and the corresponding bulk sample. The fine–coarse sand fraction contained high levels of the primary elements of the geochemical processes that occur in marine sedimentary environments such as TOC, total Fe, Mn, and S. The net concentrations of these four elements were higher in the fine-coarse sand fraction than in the very fine sand fraction and were similar to the net concentrations in the silt and clay fractions. Detailed SEM analysis of the sand coarse fraction revealed the presence of Fe and aluminum oxyhydroxide coatings in the oxic layers, whereas the framboidal pyrites and coatings observed in the anoxic layers were Fe sulfides. The presence of the various coatings explains why the trace metal concentrations in the sand fine–coarse fraction were similar to those in the clay fraction and higher than those in the very fine sand fraction. The present results highlight the importance of the sand fraction, which is generally disregarded in geochemical and environmental studies of sedimentary layers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号