首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   11篇
  国内免费   37篇
安全科学   20篇
废物处理   8篇
环保管理   6篇
综合类   55篇
基础理论   29篇
污染及防治   30篇
评价与监测   2篇
社会与环境   7篇
灾害及防治   6篇
  2023年   2篇
  2022年   7篇
  2021年   8篇
  2020年   8篇
  2019年   6篇
  2018年   3篇
  2017年   8篇
  2016年   5篇
  2015年   6篇
  2014年   5篇
  2013年   12篇
  2012年   15篇
  2011年   14篇
  2010年   4篇
  2009年   8篇
  2008年   11篇
  2007年   2篇
  2006年   4篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
  2002年   5篇
  2001年   2篇
  2000年   1篇
  1999年   6篇
  1998年   2篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
排序方式: 共有163条查询结果,搜索用时 15 毫秒
101.
The rational for the study was to review the literature on the toxicity and corresponding mechanisms associated with lead (Pb), mercury (Hg), cadmium (Cd), and arsenic (As), individually and as mixtures, in the environment. Heavy metals are ubiquitous and generally persist in the environment, enabling them to biomagnify in the food chain. Living systems most often interact with a cocktail of heavy metals in the environment. Heavy metal exposure to biological systems may lead to oxidation stress which may induce DNA damage, protein modification, lipid peroxidation, and others. In this review, the major mechanism associated with toxicities of individual metals was the generation of reactive oxygen species (ROS). Additionally, toxicities were expressed through depletion of glutathione and bonding to sulfhydryl groups of proteins. Interestingly, a metal like Pb becomes toxic to organisms through the depletion of antioxidants while Cd indirectly generates ROS by its ability to replace iron and copper. ROS generated through exposure to arsenic were associated with many modes of action, and heavy metal mixtures were found to have varied effects on organisms. Many models based on concentration addition (CA) and independent action (IA) have been introduced to help predict toxicities and mechanisms associated with metal mixtures. An integrated model which combines CA and IA was further proposed for evaluating toxicities of non-interactive mixtures. In cases where there are molecular interactions, the toxicogenomic approach was used to predict toxicities. The high-throughput toxicogenomics combines studies in genetics, genome-scale expression, cell and tissue expression, metabolite profiling, and bioinformatics.  相似文献   
102.
纳米Fe2O3与纳米SiO2对石英砂表面改性的制备工艺优化研究   总被引:1,自引:1,他引:0  
以普通石英砂滤料为原材料,纳米Fe2O3、纳米SiO2为改性剂,环氧树脂为粘结剂,表面负载量和附着强度为评价指标,通过正交试验与固定因素不同水平连续性试验等方法,制备了两种纳米氧化物改性石英砂(Nano-oxide coated sand,Nano-OCS).同时,研究了不同制备因素对Nano-OCS表面氧化铁负载量和附着强度的影响,并探讨Nano-OCS制备工艺的最佳优化条件.结果表明,水浴加热过程对改性剂和粘结剂进行慢速搅拌,最佳转速为50r·min-1,时间为45min,烘干时间1h,温度(120±5)℃,纳米Fe2O3(65.8g·L-1)与未改性石英砂(RQS)的最佳投加比(体积质量比,下同)为C=0.23mL·g-1,改性剂环氧树脂(99%)溶液与RQS的最佳投加比为C1=0.035mL·g-1,纳米SiO2(10g·L-1)与RQS的最佳投加比为C2=0.17mL·g-1,在最优条件下制备的样品负载量和有机物吸附率均达到92%.投加过量时,有机物吸附率明显减小.与传统的低温碱性沉积法或高温煅烧制得的Nano-OCS相比,加入了粘结剂环氧树脂,用低温水浴固化的方法所制得的Nano-OCS,负载量提高了约8倍,脱附率降低70%以上.本法采用无添加剂的粘结剂,表面改性后不会对水体产生二次污染.  相似文献   
103.
Starch/polyvinyl alcohol (PVA) blended materials for using as a solid carbon source (SCS) were prepared by blending PVA and gelatinized starch in an aqueous solution system, in which PVA served as framework material and starch as carbon source. The optimization of starch content and temperature effects were investigated. It was indicated that higher denitrification efficiency could be achieved with more starch in the materials. The average specific denitrification rates were 0.93, 0.66, 0.37 and 0.36 mg/(g·day) corresponding to starch content of 70%, 60%, 40% and 30% respectively at 37℃. The denitrification rates increased when operating temperature was raised from 23℃ to 30℃ and then 37℃. The mechanism of carbon release was analyzed incorporating the experimental results of abiotic release in deionized water. The organic carbon was mainly hydrolyzed by microbes, and the biological release efficiencies were at the range of 89.2% to 96.0%. A long-term experiment with a continuous flow reactor with SCS material containing 70% starch was conducted to gain some experience for practical application. When the influent nitrate concentration was in the range of 35.2 to 39.1 mg/L, hydraulic retention time of 4 hr, and operating temperature of 30℃, a nitrogen removal efficiency up to 94.6% and denitrification rate of 0.217 kg/(m3.day) was achieved. The starch-based materials developed in this study can be used as a solid carbon source for tertiary nitrogen removal from secondary effluent.  相似文献   
104.
好氧反硝化菌及其在生物处理与修复中的应用研究进展   总被引:5,自引:0,他引:5  
好氧反硝化菌因其生长特性与同步异养硝化好氧反硝化功能,为环境生物脱氮提供了崭新的技术思路.综述了已分离获得的好氧反硝化菌类群及其生长特性,重点阐述了好氧反硝化菌生物脱氮性能、影响因素与好氧反硝化机理,探讨了好氧反硝化在环境生物修复领域的应用.已有研究表明,好氧反硝化菌在环境生物脱氮方面具有明显的技术优势,但有关好氧反硝化反应机理、影响因素等仍待解析,以期为好氧反硝化菌固定化、活性持留以及受污染环境水体修复等研究提供理论依据.  相似文献   
105.
以粤北某矿横石河流域周围表层土壤2010年和2013年两批区域调查数据为基础,对其土壤中重金属含量变化趋势进行预测,并进行生态风险预警评估。结果显示,3年间土壤中Cd、Cu、Pb、Zn等元素含量降低明显,现累积速率分别为-0.001、2.88、3.71和3.11mg/(kg·a),相对累积速率以Cd最快,Zn、Cu、Pb次之;生态风险预警评估显示凉桥村和水楼下村的生态风险达到重警,上坝村为轻警。在无突变情景下,根据现累积速率预测了未来30年内的生态环境质量变化,并提出建议。  相似文献   
106.
不同干扰方式对内蒙古典型草原土壤有机碳和全氮的影响   总被引:1,自引:0,他引:1  
为准确把握草原生态保护与修复工程的实施效果,并为北方草地生态保护和优化管理提供有效的科学支持,选择内蒙古典型草原退牧还草工程区为研究对象,采用野外成对取样(围栏内-围栏外)与室内分析相结合的方法,研究了休牧、补播和自由放牧3种人为干扰方式对土壤容重、含水量、有机碳和全氮含量的影响。结果表明:在0~30 cm土层,随深度的增加,不同干扰方式对各指标的影响不同,但总体上草原土壤含水量、有机碳和全氮含量表现为补播﹥休牧﹥自由放牧(P0.05);土壤容重为自由放牧休牧补播(P0.05)。随土层深度增加,除土壤容重无显著变化外(P0.05),土壤有机碳和全氮含量均呈现显著下降(P0.05);土壤含水量则相反,其中,补播处理降幅最小,自由放牧处理降幅最大。0~30 cm各土层土壤容重与土壤含水量、土壤有机碳和全氮含量都成极显著负相关关系(P0.000 1),而土壤含水量、有机碳和全氮3项指标间相互成显著正相关关系(P0.000 1)。综上所述,不同干扰方式对草地土壤理化性状有明显影响,自由放牧加速了草地土壤有机碳和全氮的损失,而补播和休牧对遏制草地退化、恢复草地功能起到了积极的作用。  相似文献   
107.
108.
根据当前环境保护的要求,对望峰岗选煤厂的煤泥水进行深度净化试验,通过实验室试验进一步指导该厂工业性试验,以达到控制污水排放的目的.  相似文献   
109.
资源型生态关键地段对于维护和控制区域生态系统安全具有重要意义,对矿业城市资源型生态关键地段进行识别是量化矿业城市生态风险、保障生态可持续发展的有效途径。构建区域背景与斑块状态相结合的识别体系,从宏观上对次级行政区区域背景进行生态关键度分级;通过计算斑块的矿业活动指数、斑块生态脆弱度和生态损失度,从微观上反映斑块的生态关键度。应用Arc GIS空间叠加分析功能,将大冶市资源型关键地段分为原生型、损益型和扰动型,分别占总面积的36.83%,19.45%,43.72%。结果表明,基于BSM的资源型关键地段识别是分析区域生态现状的有效方法,对矿业城市生态环境治理和生态用地规划具有重要参考价值。  相似文献   
110.
简述了劳动防护用品的分类,强调了当前管理和使用中存在的问题,提出了加强管理的对策和建议。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号