首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5124篇
  免费   316篇
  国内免费   2047篇
安全科学   379篇
废物处理   311篇
环保管理   375篇
综合类   3031篇
基础理论   881篇
环境理论   2篇
污染及防治   1842篇
评价与监测   233篇
社会与环境   177篇
灾害及防治   256篇
  2024年   13篇
  2023年   97篇
  2022年   251篇
  2021年   242篇
  2020年   194篇
  2019年   170篇
  2018年   205篇
  2017年   249篇
  2016年   234篇
  2015年   306篇
  2014年   407篇
  2013年   560篇
  2012年   438篇
  2011年   428篇
  2010年   372篇
  2009年   348篇
  2008年   345篇
  2007年   296篇
  2006年   279篇
  2005年   192篇
  2004年   142篇
  2003年   181篇
  2002年   182篇
  2001年   154篇
  2000年   148篇
  1999年   148篇
  1998年   153篇
  1997年   116篇
  1996年   113篇
  1995年   121篇
  1994年   104篇
  1993年   70篇
  1992年   65篇
  1991年   46篇
  1990年   41篇
  1989年   24篇
  1988年   12篇
  1987年   10篇
  1986年   13篇
  1985年   7篇
  1984年   3篇
  1983年   5篇
  1982年   3篇
排序方式: 共有7487条查询结果,搜索用时 46 毫秒
321.
生态工程建设背景下贵州高原的植被变化及影响因素分析   总被引:1,自引:0,他引:1  
基于MODIS-NDVI和气象数据,运用趋势分析、偏相关分析和残差分析等方法,对生态工程建设背景下贵州高原的植被变化及影响因素进行分析,并定量探讨气候因素与人类活动对植被变化的影响。结果表明:(1)2000~2016年期间,贵州高原植被NDVI在空间上呈东高西低的分布特征,高值分布于野生动植物及自然保护区等,低值分布于湿地保护工程区。NDVI总体呈上升趋势,湿地保护工程区、退耕还林工程区等植被覆盖上升速率较快,野生动植物及自然保护区呈略微的下降趋势。(2)植被改善区域(83.74%)分布于研究区边缘及西北部,退化区域(16.26%)分布于研究区中部和东南部,其中退耕还林还草工程区植被改善最为明显,野生动植物保护及自然保护区和速生丰产工程区改善效果较差。(3)从气侯因素分析来看,气温和降水在总体上与NDVI均呈正相关,气温对贵州高原植被生长的影响大于降水。(4) 从人类活动分析来看,人类活动对植被的建设作用强于破坏作用,人类活动正作用(76.68%)主要分布于西北部,负作用(23.32%)集中分布于东南部。植被覆盖增加是气候因素和人类活动共同作用的结果,人类活动对植被的贡献率为75.53%,气候因素为24.47%。  相似文献   
322.
采用溶胶-凝胶法制备了Mn掺杂钙钛矿型催化剂LaFexMn1-xO3,并以其为催化剂催化湿式双氧水氧化处理煤气化废水纳滤浓缩液。采用XRD,SEM,FTIR技术对催化剂进行了表征。表征结果显示:制备的催化剂均具有标准的钙钛矿型结构,其中,LaFe0.9Mn0.1O3的结构稳定,比表面积大。实验结果表明:制备的催化剂中LaFe0.9Mn0.1O3的催化活性最高,且稳定性好,连续使用5次后催化活性未见明显减弱;在H2O2投加量3.0 g/L、n(H2O2)∶n(LaFe0.9Mn0.1O3)=12∶1、反应温度160 ℃、反应压力1 MPa、浓缩液pH 3、反应时间60 min的最优条件下,COD、UV254和TOC的去除率分别达到80.9%、95.2%和68.0%,BOD5/COD由0.02提升至0.40,可生化性大幅提高。  相似文献   
323.
Cassava starch waste hydrolysates (CSWHs) with different degrees of polymerisation, i.e., CSWHs-1, CSWHs-2 and CSWHs-3, were prepared through the hydrolysis of cassava starch waste with thermostable a-amylase from Thermococcus sp. HJ21. The prepared CSWHs were then used as a carbon source for curdlan production with Alcaligenes faecalis ATCC 31749. The amount of curdlan produced and the glucosyltransferase activity during curdlan synthesis increased more obviously when CSWHs-2 was used as the carbon source than when glucose was used. Using both carbon sources, the maximum curdlan production was observed at day 5, and the maximum glucosyltransferase activity was observed at day 4. Glucosyltransferase activity decreased thereafter, and biomass continued to increase until the end of the experiment (day 6). Results indicated that the enhanced curdlan production with CSWHs as the carbon source was highly correlated with glucosyltransferase activity.  相似文献   
324.
Liquid hot water (LHW), an environmental-friendly physico-chemical treatment, was applied to pretreat the sugarcane bagasse (SCB). Tween80, a non-ionic surfactant, was used to enhance the enzymatic hydrolysis of the pretreated SCB. It found that 0.125 mL Tween80 /g dry matter could make the maximum increase (33.2%) of the glycan conversion of the LHW-pretreated SCB. A self-designed laboratory facility with a plate-and-frame impeller was applied to conduct batch hydrolysis, fed-batch hydrolysis, and the process of high-temperature (50°C) fed-batch hydrolysis following low-temperature (30°C) simultaneous saccharification and fermentation (SSF) which was adopted to overcome the incompatible optimum temperature of saccharification and fermentation in the SSF process. After hydrolyzing LHW-pretreated SCB for 120 h with commercial cellulase, the total sugar concentration and glycan conversion obtained from fed-batch hydrolysis were 91.6 g/L and 68.3%, respectively, which were 9.7 g/L and 7.3% higher than those obtained from batch hydrolysis. With Saccharomyces cerevisiae Y2034 fermenting under the non-sterile condition, the ethanol production and theoretical yield obtained from the process of SSF after fed-batch hydrolysis were 55.4 g/L and 88.3% for 72h, respectively, which were 15.5 g/L and 24.7% higher than those from separate fed-batch hydrolysis and fermentation. The result of this work was superior to the reported results obtained from the LHW-pretreated SCB.  相似文献   
325.
The residual levels of phthalate esters (PAEs) in the surface and two core sediments from Lake Chaohu were measured with a gas chromatograph–mass spectrometer (GC–MS). The temporal–spatial distributions, compositions of PAEs, and their effecting factors were investigated. The results indicated that di-n-butyl phthalate (DnBP), diisobutyl phthalate (DIBP), and di(2-ethylhexyl) phthalate (DEHP) were three dominant PAE components in both the surface and core sediments. The residual level of total detected PAEs (∑PAEs) in the surface sediments (2.146?±?2.255 μg/g dw) was lower than that in the western core sediments (10.615?±?9.733 μg/g) and in the eastern core sediments (5.109?±?4.741 μg/g). The average content of ∑PAEs in the surface sediments from the inflow rivers (4.128?±?1.738 μg/g dw) was an order of magnitude higher than those from the lake (0.323?±?0.093 μg/g dw), and there were similar PAE compositions between the lake and inflow rivers. This finding means that there were important effects of PAE input from the inflow rivers on the compositions and distributions of PAEs in the surface sediments. An increasing trend was found for the residual levels of ΣPAEs, DnBP, and DIBP from the bottom to the surface in both the western and eastern core sediments. Increasing PAE usage with the population growth, urbanization, and industrial and agricultural development in Lake Chaohu watershed would result in the increasing production of PAEs and their resulting presence in the sediments. The significant positive relationships were also found between the PAE contents and the percentage of sand particles, as well as TOC contents in the sediment cores.  相似文献   
326.
327.
The potential for nanoscale phosphate amendments to remediate heavy metal contamination has been widely investigated, but the strong tendency of nanoparticles to form aggregates limits the application of this technique in soil. This study synthesized a composite of biochar-supported iron phosphate nanoparticle (BC@Fe3(PO4)2) stabilized by a sodium carboxymethyl cellulose to improve the stability and mobility of the amendment in soil. The sedimentation test and column test demonstrated that BC@Fe3(PO4)2 exhibited better stability and mobility than iron phosphate nanoparticles. After 28 days of simulated in situ remediation, the immobilization efficiency of Cd was 60.2 %, and the physiological-based extraction test bioaccessibility was reduced by 53.9 %. The results of sequential extraction procedures indicated that the transformation from exchangeable (EX) Cd to organic matter (OM) and residue (RS) was responsible for the decrease in Cd leachability in soil. Accordingly, the pot test indicated that Cd uptake by cabbage mustard was suppressed by 86.8 %. Compared to tests using iron phosphate nanoparticles, the addition of BC@Fe3(PO4)2 to soil could reduce the Fe uptake of cabbage mustard. Overall, this study revealed that BC@Fe3(PO4)2 could provide effective in situ remediation of Cd in soil.  相似文献   
328.
Biological aerated filters (BAFs) are widely used for the treatment of micropolluted surface water. However, the biological process produces dissolved organic nitrogen (DON), which, as precursors of nitrogenous disinfection by-products, pose potential threats to drinking water safety. Therefore, to control DON in BAF effluent, it is necessary to study the influence of BAF operation parameters on DON production. In this study, the influence of filtration velocity in a BAF on DON production was investigated. Under different filtration velocity (0.5, 2, and 4 m/h) conditions, profiles of DON concentrations along the media layer were measured. The profile at a filtration velocity of 0.5 m/h showed a decreasing trend, and the ones under filtration velocities of 2 and 4 m/h fluctuated in a small range (from 0.1 to 0.4 mg/L). Moreover, the relatively high filtration velocities of 2 and 4 m/h resulted in a lower level of DON concentration. Additionally, 3D excitation-emission matrix fluorescence spectroscopy was used to characterize DON. It is found that the patterns of DON at a relatively high filtration velocity condition (4 m/h) were obviously different from the ones under low filtration velocity conditions (0.5 and 2 m/h).  相似文献   
329.
The stability of CuO nanoparticles (NPs) is expected to play a key role in the environmental risk assessment of nanotoxicity in aquatic systems. In this study, the effect of alginate (model polysaccharides) on the stability of CuO NPs in various environmentally relevant ionic strength conditions was investigated by using time-resolved dynamic light scattering. Significant aggregation of CuO NPs was observed in the presence of both monovalent and divalent cations. The critical coagulation concentrations (CCC) were 54.5 and 2.9 mM for NaNO3 and Ca(NO3)2, respectively. The presence of alginate slowed nano-CuO aggregation rates over the entire NaNO3 concentration range due to the combined electrostatic and steric effect. High concentrations of Ca2+ (>6 mM) resulted in stronger adsorption of alginate onto CuO NPs; however, enhanced aggregation of CuO NPs occurred simultaneously under the same conditions. Spectroscopic analysis revealed that the bridging interaction of alginate with Ca2+ might be an important mechanism for the enhanced aggregation. Furthermore, significant coagulation of the alginate molecules was observed in solutions of high Ca2+ concentrations, indicating a hetero-aggregation mechanism between the alginate-covered CuO NPs and the unabsorbed alginate. These results suggested a different aggregation mechanism of NPs might co-exist in aqueous systems enriched with natural organic matter, which should be taken into consideration in future studies.
Graphical abstract Hetero-aggregation mechanism of CuO nanoparticles and alginate under high concentration of Ca2+
  相似文献   
330.
王利平  章滢  许霞  倪可 《环境工程学报》2015,9(3):1285-1288
采用复合共聚法制备一种新型无机高分子絮凝剂凹凸棒-聚硅酸铁锌(APSFZn),并应用于富营养化湖泊型原水的实验研究。考察了水体p H、投加量、搅拌强度影响因素对絮凝效果的影响。研究表明,APSFZn具有较宽的p H使用范围。当p H为7.6、投加量为20 mg/L、搅拌强度为快搅速度200 r/min,快搅时间2 min,慢搅速度50 r/min,慢搅时间15 min时,APSFZn絮凝剂对Chl-a、CODMn、TP和TN的去除率分别为91.57%、87.11%、93.48%和48.98%。与传统絮凝剂PAC、PFS、PSFZn对比,APSFZn的絮凝效果明显优于传统絮凝剂。该絮凝剂制备简单、具有良好的稳定性和絮凝特性、工艺无二次污染,将APSFZn应用于富营养化湖泊型原水具有良好的絮凝效果。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号