首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15859篇
  免费   4689篇
  国内免费   27786篇
安全科学   1653篇
废物处理   658篇
环保管理   1320篇
综合类   32204篇
基础理论   3181篇
环境理论   2篇
污染及防治   6737篇
评价与监测   1639篇
社会与环境   367篇
灾害及防治   573篇
  2024年   29篇
  2023年   163篇
  2022年   467篇
  2021年   446篇
  2020年   970篇
  2019年   2105篇
  2018年   2292篇
  2017年   2363篇
  2016年   2095篇
  2015年   2542篇
  2014年   3224篇
  2013年   3531篇
  2012年   3348篇
  2011年   2890篇
  2010年   2598篇
  2009年   2545篇
  2008年   2230篇
  2007年   2214篇
  2006年   1634篇
  2005年   1221篇
  2004年   1081篇
  2003年   887篇
  2002年   729篇
  2001年   735篇
  2000年   852篇
  1999年   765篇
  1998年   588篇
  1997年   564篇
  1996年   569篇
  1995年   485篇
  1994年   348篇
  1993年   253篇
  1992年   297篇
  1991年   283篇
  1990年   238篇
  1989年   205篇
  1988年   147篇
  1987年   74篇
  1986年   74篇
  1985年   53篇
  1984年   55篇
  1983年   42篇
  1982年   45篇
  1981年   35篇
  1980年   2篇
  1979年   2篇
  1978年   5篇
  1972年   5篇
  1971年   5篇
  1957年   1篇
排序方式: 共有10000条查询结果,搜索用时 609 毫秒
821.
Soil contamination with tetrabromobisphenol A(TBBPA) has caused great concerns;however, the presence of heavy metals and soil organic matter on the biodegradation of TBBPA is still unclear. We isolated Pseudomonas sp. strain CDT, a TBBPA-degrading bacterium, from activated sludge and incubated it with ~(14)C-labeled TBBPA for 87 days in the absence and presence of Cu~(2+)and humic acids(HA). TBBPA was degraded to organic-solvent extractable(59.4% ± 2.2%) and non-extractable(25.1% ± 1.3%) metabolites,mineralized to CO_2(4.8% ± 0.8%), and assimilated into cells(10.6% ± 0.9%) at the end of incubation. When Cu~(2+)was present, the transformation of extractable metabolites into non-extractable metabolites and mineralization were inhibited, possibly due to the toxicity of Cu~(2+)to cells. HA significantly inhibited both dissipation and mineralization of TBBPA and altered the fate of TBBPA in the culture by formation of HA-bound residues that amounted to 22.1% ± 3.7% of the transformed TBBPA. The inhibition from HA was attributed to adsorption of TBBPA and formation of bound residues with HA via reaction of reactive metabolites with HA molecules, which decreased bioavailability of TBBPA and metabolites in the culture. When Cu~(2+)and HA were both present, Cu~(2+)significantly promoted the HA inhibition on TBBPA dissipation but not on metabolite degradation. The results provide insights into individual and interactive effects of Cu~(2+)and soil organic matter on the biotransformation of TBBPA and indicate that soil organic matter plays an essential role in determining the fate of organic pollutants in soil and mitigating heavy metal toxicity.  相似文献   
822.
The disinfection of drinking water is an important public health service that generates high quality, safe and palatable tap water. The disinfection of drinking water to reduce waterborne disease was an outstanding public health achievement of the 20th century. An unintended consequence is the reaction of disinfectants with natural organic matter, anthropogenic contaminants and bromide/iodide to form disinfection by-products (DBPs). A large number of DBPs are cytotoxic, neurotoxic, mutagenic, genotoxic, carcinogenic and teratogenic. Epidemiological studies demonstrated low but significant associations between disinfected drinking water and adverse health effects. The distribution of DBPs in disinfected waters has been well defined by advances in high precision analytical chemistry. Progress in the analytical biology and toxicology of DBPs has been forthcoming. The objective of this review was to provide a detailed presentation of the methodology for the quantitative, comparative analyses on the induction of cytotoxicity and genotoxicity of 103 DBPs using an identical analytical biological platform and endpoints. A single Chinese hamster ovary cell line was employed in the assays. The data presented are derived from papers published in the literature as well as additional new data and represent the largest direct quantitative comparison on the toxic potency of both regulated and emerging DBPs. These data may form the foundation of novel research to define the major forcing agents of DBP-mediated toxicity in disinfected water and may play an important role in achieving the goal of making safe drinking water better.  相似文献   
823.
Ambient volatile organic compounds pollution in China   总被引:1,自引:0,他引:1  
Owing to rapid economic and industrial development, China has been suffering from degraded air quality and visibility. Volatile organic compounds (VOCs) are important precursors to the formation of ground-level ozone and hence photochemical smog. Some VOCs adversely affect human health. Therefore, VOCs have recently elicited public concern and given new impetus to scientific interest. China is now implementing a series of polices to control VOCs pollution. The key to formulating policy is understanding the ambient VOCs pollution status. This paper mainly analyzes the species, levels, sources, and spatial distributions of VOCs in ambient air. The results show that the concentrations of ambient VOCs in China are much higher than those of developed countries such as the United States and Japan, especial benzene, which exceeds available standards. At the same time, the ozone formation potential (OFP) and secondary organic aerosol formation potential (SOAFP) of various VOCs are calculated. Aromatics and alkenes have much higher OFPs, while aromatics have higher SOAFP. The OFPs of ambient VOCs in the cities of Beijing, Guangzhou and Changchun are very high, and the SOAFP of ambient VOCs in the cities of Hangzhou, Guangzhou and Changchun are higher.  相似文献   
824.
Per-and polyfluoroalkyl substances(PFASs) are ubiquitous in sludge and water from waste water treatment plants, as a result of their incorporation in everyday products and industrial processes. In this study, we measured several classes of persistent PFASs,precursors, transformation intermediates, and newly identified PFASs in influent and effluent sewage water and sludge from three municipal waste water treatment plants in Sweden, sampled in 2015. For sludge, samples from 2012 and 2014 were analyzed as well.Levels of precursors in sludge exceeded those of perfluoroalkyl acids and sulfonic acids(PFCAs and PFSAs), in 2015 the sum of polyfluoroalkyl phosphoric acid esters(PAPs) were 15–20 ng/g dry weight, the sum of fluorotelomer sulfonic acids(FTSAs) was 0.8–1.3 ng/g,and the sum of perfluorooctane sulfonamides and ethanols ranged from non-detected to 3.2 ng/g. Persistent PFSAs and PFCAs were detected at 1.9–3.9 ng/g and 2.4–7.3 ng/g dry weight, respectively. The influence of precursor compounds was further demonstrated by an observed substantial increase for a majority of the persistent PFCAs and PFSAs in water after waste water treatment. Perfluorohexanoic acid(PFHxA), perfluorooctanoic acid(PFOA), perfluorohexane sulfonic acid(PFHxS), and perfluorooctane sulfonic acid(PFOS)had a net mass increase in all WWTPs, with mean values of 83%, 28%, 37% and 58%,respectively. The load of precursors and intermediates in influent water and sludge combined with net mass increase support the hypothesis that degradation of precursor compounds is a significant contributor to PFAS contamination in the environment.  相似文献   
825.
The formation and concentration of disinfection by-products (DBPs) in pool water and the ambient air vary according to the type of water treatment process used. This exploratory study was aimed at investigating the short-term impact of modifications of the water treatment process on traditional DBP levels (e.g., trihalomethanes (THMs), chloramines) and emerging DBPs (e.g., Halonitromethanes, Haloketones, NDMA) in swimming pool water and/or air. A sampling program was carried to understand the impact of the following changes made successively to the standard water treatment process: activation of ultraviolet (UV) photoreactor, halt of air stripping with continuation of air extraction from the buffer tank, halt of air stripping and suppression of air extraction from the buffer tank, suppression of the polyaluminium silicate sulfate (PASS) coagulant. UV caused a high increase of Halonitromethanes (8.4 fold), Haloketones (2.1 fold), and THMs in the water (1.7 fold) and, of THMs in the air (1.6 fold) and contributed to reducing the level of chloramines in the air (1.6 fold) and NDMA in the water (2.1 fold). The results highlight the positive impact of air stripping in reducing volatile contaminants. The PASS did not change the presence of DBPs, except for the THMs, which decrease slightly with the use of this coagulant. This study shows that modifications affecting the water treatment process can rapidly produce important and variable impacts on DBP levels in water and air and suggests that implementation of any water treatment process to reduce DBP levels should take into account the specific context of each swimming pool.  相似文献   
826.
The selective catalytic reduction(SCR) activities of the MoO_3 doped V/WTi catalysts prepared by the incipient wetness impregnation method at low temperature were investigated.The results showed that the addition of MoO_3 could enhance the NO_ xconversion at low temperature and the best SCR activity was obtained when the dosage of MoO_3 reached5 wt.%. The NH3-TPD and DRIFTS experiments indicated that the addition of MoO_3 changed the type and number of acid sites on the surface of catalysts and reaction activities of acid sites were altered at the same time. The redox capacity and amount of active oxygen species got improved for V3Mo5/WTi catalyst, which could be confirmed by the H_2-TPR and transient response experiments. Water vapor inhibited the NO_xconversion at low temperature. Deposition of ammonium sulfate or bisulfate might be main reason for the loss of catalytic activity in the presence of SO_2 at low temperature. Choosing the suitable NH_3/NO ratio and elevation of reaction temperature both could weaken the influence of SO_2 on the SCR activity of the V3Mo5/WTi catalyst. Thermal treatment of the deactivated catalyst at350°C could get the low temperature activity recovered. The decrease of GHSV improved the de NO_x efficiency at low temperature and we speculated that the rational technological process and operation parameters could contribute to the application of this kind of catalysts in real industrial environment.  相似文献   
827.
Effluent dissolved organic nitrogen (DON) is problematic in nutrient sensitive surface waters and needs to be reduced to meet demanding total dissolved nitrogen discharge limits. Bioavailable DON (ABDON) is a portion of DON utilized by algae or algae + bacteria,while biodegradable DON (BDON) is a portion of DON decomposable by bacteria. ABDON and BDON in a two-stage trickling filter (TF) wastewater treatment plant was evaluated using three different microalgal species, Selenastrum capricornutum, Chlamydomonas reinhardtii and Chlorella vulgaris and mixed cultured bacteria. Results showed that up to 80% of DON was bioavailable to algae or algae + bacteria inoculum while up to 60% of DON was biodegradable in all the samples. Results showed that C. reinhardtii and C. vulgaris can be used as a test species the same as S. capricornutum since there were no significant differences among these three algae species based on their ability to remove nitrogen species.  相似文献   
828.
The Asian Network on Climate Science and Technology (www.ancst.org), in collaboration with Tsinghua University, held a conference on environmental and climate science, air pollution, urban planning and transportation in July 2015, with over 40 Asian experts participating and presentation. This was followed by a meeting with local government and community experts on the practical conclusions of the conference. Of the papers presented at the conference a selection are included in this special issue of Journal of Environmental Science, which also reflects the conclusions of the Paris Climate meeting in Dec 2015, when the major nations of the world agreed about the compelling need to reduce the upward trend of adverse impacts associated with global climate change. Now is the time for urban areas to work out the serious consequences for their populations, but also how they should work together to take action to reduce global warming to benefit their own communities and also the whole planet!  相似文献   
829.
Polycyclic aromatic hydrocarbons (PAHs) are a large group of chemicals. They represent an important concern due to their widespread distribution in the environment, their resistance to biodegradation, their potential to bioaccumulate and their harmful effects. Several pilot treatments have been implemented to prevent economic consequences and deterioration of soil and water quality. As a promising option, fungal enzymes are regarded as a powerful choice for degradation of PAHs. Phanerochaete chrysosporium, Pleurotus ostreatus and Bjerkandera adusta are most commonly used for the degradation of such compounds due to their production of ligninolytic enzymes such as lignin peroxidase, manganese peroxidase and laccase. The rate of biodegradation depends on many culture conditions, such as temperature, oxygen, accessibility of nutrients and agitated or shallow culture. Moreover, the addition of biosurfactants can strongly modify the enzyme activity. The removal of PAHs is dependent on the ionization potential. The study of the kinetics is not completely comprehended, and it becomes morem hallenging when fungi are applied for bioremediation. Degradation studies in soil are much more complicated than liquid cultures because of the heterogeneity of soil, thus, many factors should be considered when studying soil bioremediation, such as desorption and bioavailability of PAHs. Different degradation pathways can be suggested. The peroxidases are heme-containing enzymes having common catalytic cycles. One molecule of hydrogen peroxide oxidizes the resting enzyme withdrawing two electrons. Subsequently, the peroxidase is reduced back in two steps of one electron oxidation. Laccases are copper-containing oxidases. They reduce molecular oxygen to water and oxidize phenolic compounds.  相似文献   
830.
A simple approach to enhance the photocatalytic activity of red phosphorus(P) was developed.A mechanical ball milling method was applied to reduce the size of red P and to deposit graphene quantum dots onto red P. The product was characterized by scanning electron microscopy, transmission electron microscopy, contact angle measurements, zeta-potential measurements, X-ray diffraction and UV–vis absorption spectroscopy. The product exhibited high visible-light-driven photocatalytic performance in the photodegradation of rhodamine B.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号