首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2239篇
  免费   17篇
  国内免费   91篇
安全科学   106篇
废物处理   210篇
环保管理   280篇
综合类   293篇
基础理论   392篇
环境理论   1篇
污染及防治   783篇
评价与监测   193篇
社会与环境   74篇
灾害及防治   15篇
  2023年   11篇
  2022年   33篇
  2021年   36篇
  2020年   12篇
  2019年   41篇
  2018年   70篇
  2017年   58篇
  2016年   78篇
  2015年   54篇
  2014年   67篇
  2013年   178篇
  2012年   123篇
  2011年   143篇
  2010年   96篇
  2009年   129篇
  2008年   134篇
  2007年   144篇
  2006年   128篇
  2005年   114篇
  2004年   105篇
  2003年   97篇
  2002年   88篇
  2001年   62篇
  2000年   35篇
  1999年   24篇
  1998年   20篇
  1997年   23篇
  1996年   16篇
  1995年   18篇
  1994年   18篇
  1993年   19篇
  1992年   10篇
  1991年   19篇
  1990年   10篇
  1989年   9篇
  1988年   10篇
  1986年   7篇
  1985年   8篇
  1984年   7篇
  1983年   7篇
  1982年   10篇
  1981年   10篇
  1980年   9篇
  1978年   6篇
  1976年   5篇
  1974年   4篇
  1973年   5篇
  1972年   6篇
  1971年   6篇
  1969年   5篇
排序方式: 共有2347条查询结果,搜索用时 15 毫秒
171.
Tillage and field scale controls on greenhouse gas emissions   总被引:3,自引:0,他引:3  
There is a lack of understanding of how associations among soil properties and management-induced changes control the variability of greenhouse gas (GHG) emissions from soil. We performed a laboratory investigation to quantify relationships between GHG emissions and soil indicators in an irrigated agricultural field under standard tillage (ST) and a field recently converted (2 yr) to no-tillage (NT). Soil cores (15-cm depth) were incubated at 25 degrees C at field moisture content and 75% water holding capacity. Principal component analysis (PCA) identified that most of the variation of the measured soil properties was related to differences in soil C and N and soil water conditions under ST, but soil texture and bulk density under NT. This trend became more apparent after irrigation. However, principal component regression (PCR) suggested that soil physical properties or total C and N were less important in controlling GHG emissions across tillage systems. The CO2 flux was more strongly determined by microbial biomass under ST and inorganic N content under NT than soil physical properties. Similarly, N2O and CH4 fluxes were predominantly controlled by NO3- content and labile C and N availability in both ST and NT soils at field moisture content, and NH4+ content after irrigation. Our study indicates that the field-scale variability of GHG emissions is controlled primarily by biochemical parameters rather than physical parameters. Differences in the availability and type of C and N sources for microbial activity as affected by tillage and irrigation develop different levels and combinations of field-scale controls on GHG emissions.  相似文献   
172.
Limiting the spread of invasive plants has become a high priority among natural resource managers. Yet in some regions, invasive plants are providing important habitat components to native animals that are at risk of local or regional extirpation. In these situations, removing invasive plants may decrease short-term survival of the at-risk taxa. At the same time, there may be a reluctance to expand invaded habitats to benefit at-risk species because such actions may increase the distribution of invasive plants. Such a dilemma can result in “management paralysis,” where no action is taken either to reduce invasive plants or to expand habitats for at-risk species. A pragmatic solution to this dilemma may be to develop an approach that considers site-specific circumstances. We constructed a “discussion tree” as a means of initiating conversations among various stakeholders involved with managing habitats in the northeastern USA to benefit several at-risk taxa, including New England cottontails (Sylvilagus transitionalis). Major components of this approach include recognition that expanding some invaded habitats may be essential to prevent extirpation of at-risk species, and the effective control of invasive plants is dependent on knowledge of the status of invasives on managed lands and within the surrounding landscape. By acknowledging that management of invasive plants is a complex issue without a single solution, we may be successful in limiting their spread while still addressing critical habitat needs.  相似文献   
173.
With the increase in silver(Ag)-based products in our lives, it is essential to test the potential toxicity of silver nanoparticles(Ag NPs) and silver ions(Ag ions) on living organisms under various conditions. Here, we investigated the toxicity of Ag NPs with Ag ions to Escherichia coli K-12 strain under various conditions. We observed that both Ag NPs and Ag ions display antibacterial activities, and that Ag ions had higher toxicity to E. coli K-12 strain than Ag NPs under the same concentrations. To understand the toxicity of Ag NPs at a cellular level, reactive oxygen species(ROS) enzymes were detected for use as antioxidant enzymatic biomarkers. We have also studied the toxicity of Ag NPs and Ag ions under various coexistence conditions including: fixed total concentration, with a varied the ratio of Ag NPs to Ag ions; fixed the Ag NPs concentration and then increased the Ag ions concentration; fixed Ag ions concentration and then increasing the Ag NPs concentration.Exposure to Ag NPs and Ag ions clearly had synergistic toxicity; however, decreased toxicity(for a fixed Ag NPs concentration of 5 mg/L, after increasing the Ag ions concentration) to E. coli K-12 strain. Ag NPs and Ag ions in the presence of L-cysteine accelerated the bacterial cell growth rate, thereby reducing the bioavailability of Ag ions released from Ag NPs under the single and coexistence conditions. Further works are needed to consider this potential for Ag NPs and Ag ions toxicity across a range of environmental conditions.Environmental Significance Statement: As silver nanoparticles(Ag NPs)-based products are being broadly used in commercial industries, an ecotoxicological understanding of the Ag NPs being released into the environment should be further considered. Here, we investigate the comparative toxicity of Ag NPs and silver ions(Ag ions) to Escherichia coli K-12 strain, a representative ecotoxicological bioreporter. This study showed that toxicities of Ag NPs and Ag ions to E. coli K-12 strain display different relationships when existing individually or when coexisting, and in the presence of L-cysteine materials. These findings suggest that the toxicology research of nanomaterials should consider conditions when NPs coexist with and without their bioavailable ions.  相似文献   
174.
The effect of sampling protocol on ambient air hydrocarbon mixing ratios was examined on eight sampling days in Los Angeles during 2007 and 2008. Four protocols, which were based on previously published multi-city urban hydrocarbon studies in the United States, were compared and differences were quantified. Whole air canister samples were collected and analyzed for nonmethane hydrocarbons (NMHCs). Differing sampling protocols resulted in large differences in mixing ratios, up to an order of magnitude, for certain NMHCs on the same sampling day. However, the magnitude of the variability between NMHC levels obtained by the four protocols was not consistent throughout the eight sampling days. It was found that sampling time, followed by sampling location, had the greatest influence on the magnitude of the mixing ratio. Ratios between hydrocarbons, often used in urban studies to gain information on emission sources, also varied depending on the protocol used. Comparison of absolute NMHC mixing ratios collected in urban environments using differing sampling protocols should be made with care.  相似文献   
175.
Energy supply utilities release significant amounts of greenhouse gases (GHGs) into the atmosphere. It is essential to accurately estimate GHG emissions with their uncertainties, for reducing GHG emissions and mitigating climate change. GHG emissions can be calculated by an activity-based method (i.e., fuel consumption) and continuous emission measurement (CEM). In this study, GHG emissions such as CO2, CH4, and N2O are estimated for a heat generation utility, which uses bituminous coal as fuel, by applying both the activity-based method and CEM. CO2 emissions by the activity-based method are 12–19% less than that by the CEM, while N2O and CH4 emissions by the activity-based method are two orders of magnitude and 60% less than those by the CEM, respectively. Comparing GHG emissions (as CO2 equivalent) from both methods, total GHG emissions by the activity-based methods are 12–27% lower than that by the CEM, as CO2 and N2O emissions are lower than those by the CEM. Results from uncertainty estimation show that uncertainties in the GHG emissions by the activity-based methods range from 3.4% to about 20%, from 67% to 900%, and from about 70% to about 200% for CO2, N2O, and CH4, respectively, while uncertainties in the GHG emissions by the CEM range from 4% to 4.5%. For the activity-based methods, an uncertainty in the Intergovernmental Panel on Climate Change (IPCC) default net calorific value (NCV) is the major uncertainty contributor to CO2 emissions, while an uncertainty in the IPCC default emission factor is the major uncertainty contributor to CH4 and N2O emissions. For the CEM, an uncertainty in volumetric flow measurement, especially for the distribution of the volumetric flow rate in a stack, is the major uncertainty contributor to all GHG emissions, while uncertainties in concentration measurements contribute a little to uncertainties in the GHG emissions.
Implications:Energy supply utilities contribute a significant portion of the global greenhouse gas (GHG) emissions. It is important to accurately estimate GHG emissions with their uncertainties for reducing GHG emissions and mitigating climate change. GHG emissions can be estimated by an activity-based method and by continuous emission measurement (CEM), yet little study has been done to calculate GHG emissions with uncertainty analysis. This study estimates GHG emissions and their uncertainties, and also identifies major uncertainty contributors for each method.  相似文献   
176.
Organic carbon (OC) and elemental carbon (EC) in fine particles (PM2.5) at two background sites, Kosan and Kangwha in Korea were measured during intensive field studies between 1994 and 1999. Fine particles were collected on pre-fired quartz filters in a low-volume sampler and analyzed using the selective thermal oxidation method with MnO2 catalyst. The OC and EC concentrations at Kosan located at western tip of Cheju Island in southern Korea are lower than those at Kangwha located at western coastal area in mid-Korean peninsula. Still, the OC concentrations at Kosan are generally higher than those at other background areas in Japan and USA. The EC concentrations at Kosan are lower than or comparable to those at other background areas. The total carbon (TC, sum of OC and EC) to EC ratio values at both sites were higher than those at other background areas in Japan and USA. At Kosan, the OC and EC concentrations when air parcels were from southern China were higher than those when air parcels were coming from northern China. However, at Kangwha, the differences were statistically not clear since most air parcels were from northern China. Except when air parcels were from the North Pacific during summer, the OC and EC concentrations are well correlated indicating that both OC and EC share the same emission/transport characteristics. From the gaseous hydrocarbon data and the OC and EC relationship, it was found that during summer local biogenic emissions of OC might be significant at Kosan.  相似文献   
177.
This work investigated water samples collected from Tapeng Lagoon, Taiwan. Factor analysis was conducted to explain the characteristics and the variation in the quality of water during the disassembly of oyster frames and fishery boxes. The result shows that the most important latent factors in Tapeng Lagoon are the ocean factor, primary productivity factor, and the fishery pollution factor. Canonical discriminant analysis is applied to identify the source of pollution in neighboring rivers outside Tapeng Lagoon. The two constructed discriminant functions (CDFs) showed markedly contribution to all discriminant variables, and that total nitrogen, algae, dissolved oxygen and total phosphate, combined in the nutrient effect factor. The recognition capacities in these two CDFs were 95.6%, 4.4%, respectively. The water quality in the Kaoping river most strongly determined that in the Tapeng Lagoon the best is. And disassembling the oyster frames and fishery boxes improves the water quality markedly. However, environmental topographic conditions indicate that strengthening stream pollution prevention and to constructing another entrance to the ocean are the best approaches for improving the quality of water in Tapeng Lagoon, especially by reducing eutrophication. These approaches and results yield useful information concerning habitat recovery and water resource management.  相似文献   
178.
In order to understand relationships between sources and receptors of atmospheric deposition, computer models must be used. This paper describes a Lagrangian acid deposition model that represents emissions of trace species across Northern Europe. The chemistry of sulphur dioxide, dimethyl sulphide and hydrogen sulphide is represented and the model tested against estimates of UK wet and dry deposition. Mean UK wet and dry deposition for the period 1992–1994 was 206 and 145 ktonne S yr-1, respectively. The model predicted wet and dry deposition of 222 and 166 ktonne S yr-1, in good agreement with measurements. The model has been used to examine the sources of deposited S to the UK. For a base year of 1992, 86% of the UK's SO2 emissions are exported. The S deposition attributable from mainland European sources was 36% of the UK total S deposition, in good agreement with other UK models but this differs substantially from the calculations of the EMEP model. Natural sources of S deposition from planktonic emissions of dimethyl sulphide, biological emissions of hydrogen sulphide and non-eruptive volcanic emissions of sulphur dioxide contributed approximately 1% of the modelled UK S deposition, of which 95% originated from dimethyl sulphide. The explicit chemical scheme for dimethyl sulphide incorporated into the model showed that 24% of the resultant deposited S was methane sulphonic acid. Boundary conditions of the model were tested and it was found that initialisation of sulphur dioxide and sulphate concentrations to representative ambient conditions had a very small effect. The modelled contribution of UK and European sources to UK S deposition was approximately 40 and 60%, respectively, showing the dramatic change arising from projected UK SO2 emissions in 2010. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
179.

Introduction

Korea has been making efforts to reduce greenhouse gas (GHG) emissions, including a voluntary commitment to the target of a 30% reduction, based on business-as-usual of the total GHG emission volume, by 2020; 2006 IPCC Guidelines provided default values, applying country-specific emission factors was recommended when estimating national greenhouse gas emissions.

Results and discussion

This study focused on anthracite produced in Korea in order to provide basic data for developing country-specific emission factor. This study has estimated CO2 emission factors to use worksheet of which five steps consisted according to the fuel analysis method.

Conclusion

As a result, the average of net colorific value for 3 years (2007??2009) was 4,519 kcal/kg, and the CO2 emission factor was calculated to be 111,446 kg/TJ, which is about 11.8% lower than the 2006 IPCC guidelines default value, and about 7.9% higher than the US EPA emission factor.  相似文献   
180.
The objective of this study is to assess human exposure to phthalates and its associations with demographic characteristics of the subjects in the Korean National Human Biomonitoring Survey. The subjects aged between 18 and 69 were selected through nationwide stratified sampling. A total of 1874 urine samples were collected and stored at ?20 °C until measurement for ten selected metabolites of phthalates (MnBP, MiBP, MBzP, MCHP, MnOP, MEHP, MEOHP, MEHHP, MiNP, and MiDP) using high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). The difference in the level of urinary phthalate metabolites by the characteristics of the subjects was tested for statistical significance using SAS Surveyreg procedure. The coefficients and standard errors from multiple linear regressions were exponentiated to estimate the adjusted proportional change (APC) and 95% CIs compared with a referent level. The proportion of data above LOQ was less than 20% for MCHP, MnOP, MiNP, and MiDP. Geometric means of creatinine-adjusted concentrations (unit: μg/g creatinine) of six other phthalate metabolites among Korean adults were 41.7 (95% CI 39.6–43.9) for MnBP, 17.1 (95% CI 16.1–18.1) for MiBP, 15.7 (95% CI 14.4–17.1) for MBzP, 8.65 (95% CI 8.10–9.22) for MEHP, 17.5 (95% CI 16.8–18.3) for MEOHP, and 38.1 (95% CI 36.2–40.2) for MEHHP. Urinary level of phthalates tended to be higher among subjects with older age, females, and those with vigorous daily physical activity and tended to be lower among drinkers and those with higher income. Our results suggest that the level of phthalate exposure is significant among Korean adults and thus warrants further studies to identify major source and route of exposure to phthalates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号