首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   413篇
  免费   8篇
  国内免费   19篇
安全科学   31篇
废物处理   42篇
环保管理   34篇
综合类   42篇
基础理论   55篇
污染及防治   162篇
评价与监测   44篇
社会与环境   30篇
  2023年   3篇
  2022年   8篇
  2021年   9篇
  2020年   3篇
  2019年   8篇
  2018年   18篇
  2017年   17篇
  2016年   25篇
  2015年   10篇
  2014年   20篇
  2013年   33篇
  2012年   31篇
  2011年   29篇
  2010年   19篇
  2009年   26篇
  2008年   30篇
  2007年   37篇
  2006年   30篇
  2005年   21篇
  2004年   12篇
  2003年   10篇
  2002年   21篇
  2001年   5篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1994年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1976年   1篇
排序方式: 共有440条查询结果,搜索用时 15 毫秒
251.
Total selenium (Se) and water-soluble Se in soil, and Se in a shallow groundwater were hydrogeochemically researched in an alluvial fan area in Tsukui, Central Japan. The water-soluble Se was estimated at average level of 2.6 ± 1.2μg Se kg−1 dry soil (± SD, n = 25), showing less than 1% of the total Se (349–508μg Se kg−1 dry soil) in soil. The monthly Se concentration in groundwater was average 2.2μg,L−1, ranging 1.6–2.4μg,L−1 during 2001–2003. The Se in groundwater significantly decreased with increasing groundwater level after rainfall. This result indicated that Se-bearing water percolated with relatively low Se concentration through the soil layer. According to our prediction model of linear regression curve on the observation data, Se concentration in the groundwater was estimated to be increasing with the very low rate of 4.35 × 10−3μg Se L−1,yr−1. The hydrogeochemical research and the result of the prediction model showed that any explosive increase of Se will hardly occur in this groundwater without an anthropogenic Se contamination.  相似文献   
252.
Desorption kinetics of benzene was investigated with a modified biphasic desorption model in a sandy soil with five different powdered activated carbon (PAC) contents (0, 1, 2, 5, 10% w/w) as sorbents. Sorption experiments followed by series dilution desorption were conducted for each sorbent. Desorption of benzene was successively performed at two stages using deionized water and hexane. Modeling was performed on both desorption isotherm and desorption rate for water-induced desorption to elucidate the presence of sorption–desorption hysteresis and biphasic desorption and if present to quantify the desorption-resistant fraction (q irr) and labile fraction (F) of desorption site responsible for rapid process. Desorption isotherms revealed that sorption–desorption exhibited a severe hysteresis with a significant fraction of benzene being irreversibly adsorbed onto both pure sand and PAC, and that desorption-resistant fraction (q irr) increased with PAC content. Desorption kinetic modeling showed that desorption of benzene was biphasic with much higher (4–40 times) rate constant for rapid process (k 1) than that for slow process (k 2), and that the difference in the rate constant increased with PAC content. The labile fraction (F) of desorption site showed a decreasing tendency with PAC. The experimental results would provide valuable information on remediation methods for soils and groundwater contaminated with BTEX.  相似文献   
253.
Choi MP  Ho SK  So BK  Cai Z  Lau AK  Wong MH 《Chemosphere》2008,71(2):211-218
PCDD/F and dioxin-like PCB were measured in 142 air samples of Hong Kong. The annual average PCDD/F and dioxin-like PCB concentrations obtained for Hong Kong air at Tap Mun (PCDD/F: 1724+/-1984; dioxin-like PCB: 1572+/-1170 fg m(-3)), Yuen Long (PCDD/F: 2927+/-2695; dioxin-like PCB: 4331+/-1962 fg m(-3)) and Tsuen Wan (PCDD/F: 1875+/-1502; dioxin-like PCB: 2972+/-1510 fg m(-3)) from January 2004 to March 2005 were comparable to other urban centers around the world and were within the Japanese and USA ambient air quality guidelines. A clear seasonal pattern was observed for PCDD/F, generally with a 50-60 times higher air concentration in winter when background northerly wind was weaker and land-sea breeze prevailed, resulting in regional transport; and a lower concentration in summer, due to the inflow of clean oceanic southeasterly wind from the South China Sea. A higher WHO-TEQ value of dioxin-like PCB (mainly attributed to the relatively higher WHO-TEQ value of PCB 126) in Yuen Long during winter, compared with other months, could also be related to the regional transport by the winter monsoon wind and the low mixing height in winter. Spatially, air concentrations of PCDD/F and dioxin-like PCB demonstrated a west-to-east gradient (with Yuen Long>Tsuen Wan>Tap Mun). It is suggested that PCDD/F and dioxin-like PCB were transported into the western airshed of Hong Kong from the Pearl River Delta by land-sea breeze circulation and confined to the northwestern part, due to the blocking effect of the northwestern airshed in Hong Kong.  相似文献   
254.
The distribution and structure of heterotrophic protist communities and size-fractionated chlorophyll a were studied during the Korea Deep Ocean Study 98 (KODOS 98) research expedition (July 1998) in the northeast equatorial Pacific Ocean (5–11°N). Areas of convergence and divergence formed at the boundaries of the South Equatorial Current (SEC), North Equatorial Current (NEC), and North Equatorial Counter Current (NECC) during the expedition. Water column physicochemical characteristics significantly influenced the size structure of heterotrophic protist communities. Intense vertical mixing and high nutrient and chlorophyll a concentrations characterized SEC and NECC areas, which were affected by converging and diverging water masses, respectively. Nanophytoplankton dominated in SEC and NECC areas; both areas also had relatively high heterotrophic protist biomasses (average 743 µg C m–2). NEC areas were characterized by a stratified vertical structure, low nutrient and chlorophyll a concentrations, and picophytoplankton dominance. The heterotrophic protist biomass in NEC areas averaged 414 µg C m–2; nanoprotists (<20 µm) dominated the community. The nanoprotist biomass comprised 49–54% of the total heterotrophic protist biomass in SEC/NECC areas and 67–72% in NEC areas. The biomass of heterotrophic protists was higher in SEC/NECC areas than in NEC areas, but the relative importance of nanoprotists was greater in NEC areas than in SEC/NECC areas. Heterotrophic dinoflagellates were dominant components of the <20 µm and >20 µm size classes in both water columns. The biomass of heterotrophic protists significantly correlated with the net-, nano-, and picophytoplankton biomass in SEC/NECC areas and with the nano- and picophytoplankton biomass in NEC areas. Heterotrophic protists and phytoplankton also showed strong positive correlation in the study area. The size structure of the phytoplankton biomass coincided with that of heterotrophic protists; the heterotrophic protist biomass positively correlated with the protists prey source. These relationships suggest that the community structure of heterotrophic protists and the microbial food web depended on size classes within the phytoplankton biomass. Microzooplankton grazing and phytoplankton growth rates were higher in SEC/NECC areas than in NEC areas. In contrast, the potential primary production grazed by microzooplankton was relatively high in NEC areas (127.3%) compared with SEC/NECC areas (94.6%). Our results indicate that the relative importance and size structure of heterotrophic protists might vary according to two distinct water column structures.Communicated by T. Ikeda, Hakodate  相似文献   
255.
Sin DW  Choi JY  Louie PK 《Chemosphere》2002,47(6):647-653
A total of 27 ambient air samples of were collected from six locations in Hong kong during the period of January-August, 2000 and analysed for polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs). In all sampling locations, higher concentrations of PCDDs/PCDFs, ranging from 0.03 to 0.43 pg I-TEQ/m3 were measured in winter months (January and March) than in the summer months (July and August) of concentrations at 0.018-0.025 pg I-TEQ/m3. These concentrations are similar to annual ranges reported earlier for two Hong Kong urban sites and other urban cities in Asia. Europe, and the United States. Despite significant seasonal variations in ambient air concentrations of PCDD/Fs (expressed in I-TEQ) were observed, the congener profiles of all the samples in this study period were similar, with OCDD, 1,2,3,4,6,7,8-HpCDD, OCDF and 1,2,3,4,6,7,8-HpCDF being the predominant species. However, the homologue profiles for the samples collected at the six locations of this study were found to display significantly different spatial and seasonal trends.  相似文献   
256.
Phenolic compounds constitute one of the major pollutants in the modern world. Although many physical and chemical treatment technologies for their removal exist, most of them are economically not feasible. The present study was aimed at using silk cotton hull, a potent agricultural waste as an adsobent for removal of 2,4-dichlorophenol (2,4-DCP), which was used as a model phenolic compound. The process parameters were investigated and optimized conditions were determined. The equilibrium time was found to ...  相似文献   
257.
The effect of mixing of NH3 and NO on the selective noncatalytic reduction (SNCR) reaction was investigated using a bench-scale reactor. Three different experimental conditions were compared for the removal of NO in the bulk gas with NH3, a reducing agent, by means of mixing and contacting. The temperature that gave the highest NO removal efficiency was about 800°C when NH3 was injected with air or NH3 was premixed and air was injected. It is suggested that control of mixing of the reducing agent and the injection conditions could be a good way to increase NO removal efficiency as well as to lower the reaction temperature. When NH3 was injected with air, the NO removal efficiency increased with increasing injected air flow if the initial NO concentration was low, whereas for high NO concentrations, the NO removal efficiency slightly increased up to an injected air flow rate of 100 ml/min. A proposed mixed-flow model can be used as a prediction tool for the NO removal efficiency covering various conditions of the real SNCR process.  相似文献   
258.
A land-use-change simulation model (LEAM) and a non-point-source (NPS) water quality model (L-THIA) were closely coupled as LEAMwq in order to determine the long-term implications of various degree of urbanization on NPS total nitrogen (TN), total suspended particles (TSP), and total phosphorus (TP) loads. A future land-use projection in the St. Louis metropolitan area from 2005 to 2030 using three economic growth scenarios (base, low, and high) and a long-term precipitation dataset were used to predict the mean annual surface runoff and mean annual NPS pollutant loads in the region. Results show mean annual TN increases of 0.21%, 0.13%, and 0.14% by 2030 compared to 2000 under the base, high, and low scenarios, respectively. TSP and TP showed similar trends with different magnitudes. Corresponding changes in annual mean surface runoff were shown to be lower than expected, which might be attributed to the small-scale conversion pattern of land uses. In the most dramatic change (high growth) scenario, the runoff would increase across time but at varying rates, and temporal pollutant loads would result in a more complicated pattern than in the other scenarios. This is attributed to the complex interactions between event mean concentrations of pollutants and the magnitude of changes in land-use acreages. By integrating L-THIA with LEAM, LEAMwq was found to be a useful planning tool to illustrate in a quick and simple manner how future water quality is connected to decision-making on future land-use change.  相似文献   
259.
Nitrate reduction by fluoride green rust modified with copper   总被引:2,自引:0,他引:2  
Choi J  Batchelor B 《Chemosphere》2008,70(6):1108-1116
Nitrate reduction by the fluoride form of green rust modified with copper (GR-F(Cu)) was investigated using a batch reactor system. The extent of nitrate reduction was measured by measuring the increase in concentration of ammonia, which is the final product of nitrate reduction by GR. This approach was required, because nitrate could be removed from solution by ion exchange without reduction. The rate of ammonium production was investigated over the range of pH 7.8-11. The fastest reaction was achieved at pH 9 when GR was present at a concentration of 0.083M as Fe(II) and 1mM of Cu(II) was added. The rate at pH 9 was enhanced by a factor of 2.5 compared to that at pH 7.8 by comparing the time elapsed to transform all nitrate to ammonium. Kinetics of nitrate reduction by GR-F at pH 7.8 were affected by the concentration of Cu(II) added. The rate constants for ammonium production increased from 0.012 to 1.52h(-1) as Cu(II) additions increased from 0 to 2.5mM, but the reaction rate at 5mM was slightly decreased to 1.25h(-1). The mechanism of enhanced rates of nitrate reduction by addition of Cu(II) could not be fully determined in this study. However, XRD results showed that magnetite was produced in the reaction of Cu(II) and GR-F and SEM shows the production of nano-size particles which were not fully identified in this study. In addition, the concentration of Fe(II) in GR was observed to linearly decrease with concentration of Cu(II) added.  相似文献   
260.
Heavy metal contamination of agricultural soils has received great concern due to potential risk to human health. Cadmium and Pb are largely released from abandoned or closed mines in Korea, resulting in soil contamination. The objective of this study was to evaluate the effects of eggshell waste in combination with the conventional nitrogen, phosphorous, and potassium fertilizer (also known as NPK fertilizer) or the rapeseed residue on immobilization of Cd and Pb in the rice paddy soil. Cadmium and Pb extractabilities were tested using two methods of (1) the toxicity characteristics leaching procedure (TCLP) and (2) the 0.1 M HCl extraction. With 5 % eggshell addition, the values of soil pH were increased from 6.33 and 6.51 to 8.15 and 8.04 in combination with NPK fertilizer and rapeseed residue, respectively, compared to no eggshell addition. The increase in soil pH may contribute to heavy metal immobilization by altering heavy metals into more stable in soils. Concentrations of TCLP-extracted Cd and Pb were reduced by up to 67.9 and 93.2 % by addition of 5 % eggshell compared to control. For 0.1 M HCl extraction method, the concentration of 0.1 M HCl-Cd in soils treated with NPK fertilizer and rapeseed residue was significantly reduced by up to 34.01 and 46.1 %, respectively, with 5 % eggshell addition compared to control. A decrease in acid phosphatase activity and an increase in alkaline phosphatase activity at high soil pH were also observed. Combined application of eggshell waste and rapeseed residue can be cost-effective and beneficial way to remediate the soil contaminated with heavy metals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号