首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   10篇
  国内免费   118篇
安全科学   1篇
环保管理   1篇
综合类   115篇
基础理论   38篇
污染及防治   55篇
评价与监测   2篇
灾害及防治   1篇
  2023年   2篇
  2022年   7篇
  2021年   6篇
  2020年   3篇
  2019年   3篇
  2018年   4篇
  2017年   7篇
  2016年   5篇
  2015年   5篇
  2014年   7篇
  2013年   5篇
  2012年   10篇
  2011年   13篇
  2010年   20篇
  2009年   17篇
  2008年   15篇
  2007年   17篇
  2006年   21篇
  2005年   4篇
  2004年   13篇
  2003年   10篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   7篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1990年   1篇
排序方式: 共有213条查询结果,搜索用时 31 毫秒
21.
强化生物除磷系统的微生物学及生化特性研究进展   总被引:2,自引:0,他引:2  
综述了强化生物除磷(Enhanced biological phosphorus removal,EBPR)系统的微生物学和生化特性两方面的最新研究进展.在微生物学方面,归纳了EBPR系统中的主要微生物——聚磷菌、聚糖菌、反硝化聚磷菌的分类及相互之间的竞争和联系.具有聚磷功能的微生物种类繁多,目前普遍认为Accumulibacter是一种典型的聚磷菌,在各种规模的EBPR系统中均不同程度的存在.关于聚磷菌和聚糖菌的联系、反硝化聚磷菌的分类问题存在争论.在生化特性方面,归纳了聚磷菌体内三大聚合物——糖原、聚β-羟基烷酸脂和聚合磷酸盐与聚磷菌代谢功能的关系.聚磷菌厌氧阶段的还原力由糖酵解和有机底物TCA循环共同提供,其比例受种群结构和实验条件影响.糖原根据不同菌株厌氧阶段的降解途径有所不同,但是对细胞都起到调节氧化平衡的作用.聚β-羟基烷酸脂的组成由有机底物决定,丙酸为底物时4种单体均可检测出来.聚磷菌厌氧释磷的能量来自聚磷分解和糖原分解,耗能受环境条件影响.图5表3参37  相似文献   
22.
采用等温平衡法,测定了锌、钾、钙两两共存下赤红壤镉的吸附量,应用Freundlich方程分析了土壤镉的吸附特征,并计算了镉的分配系数(KdCd).结果表明,用Freundlich吸附等温方程拟合土壤镉的吸附特征具有很好的相关性.与单钠体系相比,钙钾、钙锌及锌钾共存均使赤红壤吸附镉的能力减弱,赤红壤的总吸附容量(Kf值)分别降低了56.5%、96.73%和91.3%.不同离子两两共存下改变土壤吸附镉能力的程度不同,钙钾共存的Kf值明显高于钙锌、钾锌共存,对Kf值的影响程度的次序为:锌钾≈钙锌,钙钾.钙锌、钾共存时,增加吸附体系中锌质量浓度将明显降低镉的分配系数(KdCd值),共存离子中锌含量与KdCd值呈明显负相关.钙锌、钾锌以不同比例与镉共存时,锌含量高低是制约KdCd值大小的主要因子.  相似文献   
23.
氮缺乏引起的非丝状菌活性污泥膨胀   总被引:23,自引:3,他引:20  
采用SBR法处理啤酒废水,研究了进水中不同有机物与总氮的比值(以BOD/N计)条件对活性污泥膨胀的影响.结果表明,在进水BOD/N为100/4的条件下,污泥的沉降性能良好;在进水BOD/N分别为100/3和100/2时,均发生由高含水率的粘性菌胶团过量生长引起的非丝状菌膨胀.在进水BOD/N为100/0.94的条件下,发生的非丝状菌膨胀最为严重.试验中还研究了氮缺乏条件下污泥微生物对氮源和磷源的利用率以及COD去除率的变化.  相似文献   
24.
Denitrifying phosphorus accumulating organisms (DPAOs) using nitrite as an electron acceptor can reduce more energy. However, nitrite has been reported to have an inhibition on denitrifying phosphorus removal. In this study, the step-feed strategy was proposed to achieve low nitrite concentration, which can avoid or relieve nitrite inhibition. The results showed that denitrification rate, phosphorus uptake rate and the ratio of the phosphorus uptaken to nitrite denitrified (anoxic P/N ratio) increased when the nitrite concentration was 15 mg·L-1 after step-feeding nitrite. The maximum denitrification rate and phosphorus uptake rate was 12.73 mg NO2-N·g MLSS-1?h-1 and 18.75 mg PO43-–P·g MLSS-1?h-1, respectively. These rates were higher than that using nitrate (15 mg·L-1) as an electron acceptor. The maximum anoxic P/N ratio was 1.55 mg PO43--P?mg NO2--N-1. When the nitrite concentration increased from 15 to 20 mg NO2--N?L-1 after addition of nitrite, the anoxic phosphorus uptake was inhibited by 64.85%, and the denitrification by DPAOs was inhibited by 61.25%. Denitrification rate by DPAOs decreased gradually when nitrite (about 20 mg·L-1) was added in the step-feed SBR. These results indicated that the step-feed strategy can be used to achieve denitrifying phosphorus removal using nitrite as an electron acceptor, and nitrite concentration should be maintained at low level (<15 mg·L-1 in this study).  相似文献   
25.
用溶解氧浓度作为SBR法过程和反应时间控制参数   总被引:27,自引:0,他引:27  
进行了以DO作为SBR法过程和反应时间控制参数的试验研究。结果表明,无论使曝气量或初始污泥浓度大幅度变化,还是逐渐或突然改变初始有机物浓度等各种试验条件,都会在反应阶段开始不久出现所谓平衡DO浓度现象;当有机物达到其难降解浓度时DO浓度迅速地大幅度升高。因此,在目前还没有简易、快速的有机物浓度传感器的情况下,DO不仅可作为反应时间的指示性控制参数,而且也能可靠地作为反应阶段的过程控制参数。  相似文献   
26.
针对4种不同的实际污水短程生物脱氮系统(SBR大型中试反应器、UASB-A/O小型反应器、A/O中试反应器和SBR小型反应器),采用Fish、PCR-DGGE和PCR-Cloning-Sequencing分子生物学方法对系统中硝化菌群AOB和NOB进行定性与定量化分析.Fish结果表明,在4种短程脱氮系统中,AOB相比于NOB已成为明显的优势菌群,占总菌群的3%~12%;在SBR中试和小试反应器中没有检测出NOB;A/O中试反应器中存在极少量的Nitrospira(<0.2%),而UASB-A/O小型反应器中存在极少量的Nitrobacteria(<0.2%).PCR-DGGE结果表明SBR中试、A/O和UASB-A/O 3种短程脱氮系统中的AOB均以Nitrosomonas-like为主.SBR大型中试反应器中污泥样品的PCR-Cloning-Sequencing结果表明,所有的克隆相似于Nitrosomonas,其中60%以上的克隆相似于Nitrosomonas europaea.  相似文献   
27.
以DO、ORP、pH作为两段SBR工艺的实时控制参数   总被引:20,自引:0,他引:20       下载免费PDF全文
介绍了在传统SBR脱氮工艺的基础上 ,开发的用于处理COD和氮浓度较高的工业废水的两段SBR系统 (TSSBR) .根据传统SBR工艺在反应过程中 ,当COD不再被降解 ,而硝化反应又没有开始时 ,DO迅速大幅度升高以及pH曲线上出现的拐点 ,可以将COD降解与硝化反应分割开 ,先后在不同的反应器内进行 ,分别命名为SBR1和SBR2 ,避免高COD浓度对硝化反应的冲击 ,提高处理效率 .利用在线检测的DO、ORP和pH参数实时控制SBR1、SBR2各个生化过程的反应时间 ,解决了两段SBR系统的自动控制问题 ,可以使系统长期稳定运行 ,保证出水水质 ,节约能耗 .采用实时控制策略 ,并控制系统温度在 3 0℃左右 ,可将SBR2的硝化反应控制在亚硝酸型硝化结束 .采用该工艺处理石化废水 ,COD去除率达到 90 %~ 95 % ,3 0℃时的比硝化反应速率达到 0 3kg(NH4 N) (kg(MLSS)·d) ,出水已检测不出氨氮和硝态氮  相似文献   
28.
在现有的关于活性污泥法最优控制研究的基础上,首次提出了以两个最重要的控制参数污泥排放量和溶解氧浓度(DO)为控制变量、以出水水质为约束条件、以运行费用为性能指标的活性污泥法多变量最优控制的研究问题,并着重进行了基础研究.首先建立了最优控制所必要的基本状态方程与性能指标的泛函表达式.然后通过计算研究了在满足同一出水质量前提下控制不同的DO浓度时所需要的运行费用.结果表明,DO为09mg/L时所需运行费用最少,这与主张应当维持DO浓度大于2mg/L的传统观点相比相差甚远;衰减速率常数Kd不受DO影响的假设也不合理.  相似文献   
29.
The anaerobic-anoxic oxidation ditch (A2/O OD) process is popularly used to eliminate nutrients from domestic wastewater. In order to identify the existence of denitrifying phosphorus removing bacteria (DPB), evaluate the contribution of DPB to biological nutrient removal, and enhance the denitrifying phosphorus removal in the A2/O OD process, a pilot-scale A2/O OD plant (375 L) was conducted. At the same time batch tests using sequence batch reactors (12 L and 4 L) were operated to reveal the significance of anoxic phosphorus removal. The results indicated that: The average removal efficiency of COD, NH4+, PO43−, and TN were 88.2%, 92.6%, 87.8%, and 73.1%, respectively, when the steady state of the pilotscale A2/O OD plant was reached during 31–73 d, demonstrating a good denitrifying phosphorus removal performance. Phosphorus uptake took place in the anoxic zone by poly-phosphorus accumulating organisms NO2 could be used as electron receptors in denitrifying phosphorus removal, and the phosphorus uptake rate with NO2 as the electron receptor was higher than that with NO3 when the initial concentration of either NO2 or NO3 was 40 mg/L.  相似文献   
30.
交替好氧/缺氧短程硝化反硝化生物脱氮Ⅰ.方法实现与控制   总被引:22,自引:1,他引:22  
采用实时控制策略和曝气 搅拌交替运行方式在 ( 2 6± 1 )℃下开发了一种新型短程硝化反硝化生物脱氮工艺 :实时控制交替好氧 缺氧短程硝化反硝化脱氮工艺 .并对其与实时控制传统SBR法短程硝化反硝化脱氮和预先设定时间控制交替好氧 缺氧短程硝化反硝化脱氮工艺进行了比较研究 .结果显示 ,实时控制交替好氧 缺氧短程硝化反硝化脱氮工艺无论从硝化速率、反硝化速率还是从硝化时间、反硝化时间上均优于实时控制传统SBR法短程硝化反硝化脱氮和预先设定时间控制交替好氧 缺氧短程硝化反硝化脱氮两种工艺 .其硝化速率和反硝化速率分别是预先设定时间控制交替好氧 缺氧短程硝化反硝化工艺的 1 3 8倍和 1 2 5倍 ,是实时控制传统SBR法短程硝化反硝化脱氮工艺的 1 82倍和 1 6 1倍 .因此 ,实时控制交替好氧 缺氧短程硝化反硝化脱氮工艺不但能够合理分配曝气和搅拌时间 ,而且还能提高硝化、反硝化速率 ,缩短反应时间 ,从而达到降低运行成本的目的  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号