首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   436篇
  免费   5篇
  国内免费   11篇
安全科学   16篇
废物处理   45篇
环保管理   45篇
综合类   56篇
基础理论   84篇
污染及防治   155篇
评价与监测   39篇
社会与环境   12篇
  2024年   1篇
  2023年   1篇
  2022年   7篇
  2021年   6篇
  2020年   3篇
  2019年   6篇
  2018年   8篇
  2017年   11篇
  2016年   11篇
  2015年   7篇
  2014年   16篇
  2013年   39篇
  2012年   18篇
  2011年   38篇
  2010年   20篇
  2009年   28篇
  2008年   37篇
  2007年   46篇
  2006年   34篇
  2005年   15篇
  2004年   20篇
  2003年   15篇
  2002年   9篇
  2001年   7篇
  2000年   11篇
  1999年   3篇
  1998年   5篇
  1997年   6篇
  1996年   4篇
  1995年   2篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1976年   2篇
排序方式: 共有452条查询结果,搜索用时 156 毫秒
391.
The porous carbons derived from cellulose are renewable and environmentally friendly. Coconut shell and wood derived porous carbons were characterized with elemental analysis, ash content, X-ray diffraction, infrared absorbance, particle size, surface area, and pore volume. The results were compared with carbon black. Uniaxial deformation of natural rubber (NR) composites indicate the composites reinforced with the porous carbon from coconut shell have higher tensile moduli at the same elongation ratio than the composites reinforced with wood carbon. 40 % coconut shell composite showed a fivefold increase in tensile modulus compared to NR. Polymer–filler interactions were studied with frequency dependent shear modulus, swelling experiments and dynamic strain sweep experiments. Both linear and non-linear viscoelastic properties indicate the polymer–filler interactions are similar between coconut shell carbon and wood carbon reinforced composites. The swelling experiments, however, showed that the polymer–filler interaction is greater in the composites reinforced with coconut shell instead of wood carbon.  相似文献   
392.
Peroxyacetyl nitrate (PAN) in air has been well known as the indicator of photochemical smog due to its frequent occurrences in Seoul metropolitan area. This study was implemented to assess the distribution characteristics of atmospheric PAN in association with relevant parameters measured concurrently. During a full year period in 2011, PAN was continuously measured at hourly intervals at two monitoring sites, Gwang Jin (GJ) and Gang Seo (GS) in the megacity of Seoul, South Korea. The annual mean concentrations of PAN during the study period were 0.64 ± 0.49 and 0.57 ± 0.46 ppb, respectively. The seasonal trends of PAN generally exhibited dual peaks in both early spring and fall, regardless of sites. Their diurnal trends were fairly comparable to each other. There was a slight time lag (e.g., 1 h) in the peak occurrence pattern between O3 and PAN, as the latter trended to peak after the maximum UV irradiance period (16:00 (GJ) and 17:00 (GS)). The concentrations of PAN generally exhibited strong correlations with particulates. The results of this study suggest that PAN concentrations were affected sensitively by atmospheric stability, the wet deposition of NO2, wind direction, and other factors.  相似文献   
393.
394.
The attenuation of bulk organic matter and trace organic contaminants (TOrCs) was evaluated for various aquifer recharge and recovery (ARR)-ozone (O3) hybrid treatment process combinations using soil-batch reactor and bench-scale ozonation experiments as a proof of concept prior to pilot and/or field studies. In water reclamation and especially potable reuse, refractory bulk organic matter and TOrCs are of potential health concern in recycled waters. In this study, the role of biotransformation of bulk organic matter and TOrCs was investigated considering different simulated treatment combinations, including soil passage (ARR) alone, ARR after ozonation (O3-ARR), and ARR prior to ozonation (ARR-O3). During oxic (aerobic) ARR simulations, soluble microbial-like substances (e.g., higher molecular weight polysaccharides and proteins) were easily removed while (lower molecular weight) humic substances and aromatic organic matter were not efficiently removed. During ARR-ozone treatment simulations, removals of bulk organic matter and TOrCs were rapid and effective compared to ARR alone. A higher reduction of effluent-derived organic matter, including aromatic organic matter and humic substances, was observed in the ARR-O3 hybrid followed by the O3-ARR hybrid. An enhanced attenuation of recalcitrant TOrCs was observed while increasing the ozone dose slightly (O3: DOC = 1). TOrC removal efficiency also increased during the post-ozone treatment combination (i.e., ARR-O3). In addition, the carcinogenic wastewater disinfection byproduct N-nitrosodimethylamine (NDMA) was eliminated below the method reporting limit (<5 ng L−1) both during ARR treatment alone and the ARR-ozone hybrid.  相似文献   
395.
Trichloroethylene (TCE) is one of the most hazardous organic pollutants in groundwater. Biochar produced from agricultural waste materials could serve as a novel carbonaceous adsorbent for removing organic contaminants from aqueous media. Biochars derived from pyrolysis of soybean stover at 300 °C and 700 °C (S-300 and S-700, respectively), and peanut shells at 300 °C and 700 °C (P-300 and P-700, respectively) were utilized as carbonaceous adsorbents to study batch aqueous TCE remediation kinetics. Different rate-based and diffusion-based kinetic models were adopted to understand the TCE adsorption mechanism on biochars. With an equilibrium time of 8–10 h, up to 69 % TCE was removed from water. Biochars produced at 700 °C were more effective than those produced at 300 °C. The P-700 and S-700 had lower molar H/C and O/C versus P-300 and S-300 resulting in high aromaticity and low polarity accompanying with high surface area and high adsorption capacity. The pseudo-second order and intraparticle diffusion models were well fitted to the kinetic data, thereby, indicating that chemisorption and pore diffusion were the dominating mechanisms of TCE adsorption onto biochars.  相似文献   
396.
Immobilization of lead in contaminated firing range soil using biochar   总被引:3,自引:0,他引:3  
Soybean stover-derived biochar was used to immobilize lead (Pb) in military firing range soil at a mass application rate of 0 to 20 wt.% and a curing period of 7 days. The toxicity characteristic leaching procedure (TCLP) was performed to evaluate the effectiveness of the treatment. The mechanism responsible for Pb immobilization in military firing range soil was evaluated by scanning electron microscopy-energy dispersive x-ray spectroscopy (SEM-EDX) and x-ray absorption fine structure (XAFS) spectroscopy analyses. The treatment results showed that TCLP Pb leachability decreased with increasing biochar content. A reduction of over 90 % in Pb leachability was achieved upon treatment with 20 wt.% soybean stover-derived biochar. SEM-EDX, elemental dot mapping and XAFS results in conjunction with TCLP leachability revealed that effective Pb immobilization was probably associated with the pozzolanic reaction products, chloropyromorphite and Pb-phosphate. The results of this study demonstrated that soybean stover-derived biochar was effective in immobilizing Pb in contaminated firing range soil.  相似文献   
397.
A new differential display-polymerase chain reaction (PCR) method based on annealing control primers was used to screen and identify potential biomarkers from differentially expressed genes (DEGs) in medaka exposed to sub-lethal concentration of diazinon (100 ppb). Among the differentially expressed genes identified, the majority were in functional categories of protein biosynthesis, transport and metabolism according to the gene ontology classification. The differential expression of ribosomal protein genes was quantified by real time PCR. The genes encoding ribosomal proteins including L3 and S17 were selected as potential biomarkers for diazinon exposure in medaka fish.  相似文献   
398.
TiO2-supported manganese oxide catalysts formed using different calcination temperatures were prepared by using the wet-impregnation method and were investigated for their activity in the low-temperature selective catalytic reduction (SCR) of NO by NH3 with respect to the Mn valence and lattice oxygen behavior. The surface and bulk properties of these catalysts were examined using Brunauer-Emmett-Teller (BET) surface area, X-ray diffraction (XRD), temperature-programmed reduction (TPR), and temperature-programmed desorption (TPD). Catalysts prepared using lower calcination temperatures, which contained Mn4+, displayed high SCR activity at low temperatures and possessed several acid sites and active oxygen. The TPD analysis determined that the Brönsted and Lewis acid sites in the Mn/TiO2 catalysts were important for the low-temperature SCR at 80~160 and 200~350 °C, respectively. In addition, the available lattice oxygen was important for attaining high NO to NO2 oxidation at low temperatures.

Implications: Recently, various Mn catalysts have been evaluated as SCR catalysts. However, there have been no studies on the relationship of adsorption and desorption properties and behavior of lattice oxygen according to the valence state for manganese oxides (MnOx). Therefore, in this study, the catalysts were prepared by the wet-impregnation method at different calcination temperatures in order to show the difference of manganese oxidation state. These catalysts were then characterized using various physicochemical techniques, including BET, XRD, TPR, and TPD, to understand the structure, oxidation state, redox properties, and adsorption and desorption properties of the Mn/TiO2 catalysts.  相似文献   
399.
The biodegradability and the biodegradation rate of two kinds biodegradable polymers; poly(caprolactone) (PCL)-starch blend and poly(butylene succinate) (PBS), were investigated under both aerobic and anaerobic conditions. PCL-starch blend was easily degraded, with 88% biodegradability in 44 days under aerobic conditions, and showed a biodegradation rate of 0.07 day−1, whereas the biodegradability of PBS was only 31% in 80 days under the same conditions, with a biodegradation rate of 0.01 day−1. Anaerobic bacteria degraded well PCL-starch blend (i.e., 83% biodegradability for 139 days); however, its biodegradation rate was relatively slow (6.1 mL CH4/g-VS day) compared to that of cellulose (13.5 mL CH4/g-VS day), which was used as a reference material. The PBS was barely degraded under anaerobic conditions, with only 2% biodegradability in 100 days. These results were consistent with the visual changes and FE-SEM images of the two biodegradable polymers after the landfill burial test, showing that only PCL-starch blend had various sized pinholes on the surface due to attack by microorganisms. This result may be use in deciding suitable final disposal approaches of different types of biodegradable polymers in the future.  相似文献   
400.
Hwang SH  Park DU  Joo SI  Park HH  Yoon CS 《Chemosphere》2011,85(1):135-139
In this study, we assessed airborne endotoxin levels in university laboratories, hospital diagnostic laboratories, and a biowaste site. We also investigated indoor and outdoor sampling, sampling site, type of ventilation system, presence of open biowaste boxes, weather, and detection of Gram-negative bacteria (GNB). A total of 69 air samples were collected from 11 facilities in three institutions. Average total airborne endotoxin levels ranged from <0.01 to 10.02 EU m−3, with an overall mean of 1.03 EU m−3. Endotoxin levels were high in window-ventilated facilities, in facilities in which GNB were detected; levels were also high when it was rainy (all ps < 0.05). Endotoxin levels were significantly correlated with humidity (r = 0.70, p < 0.01). The presence of HVAC; humidity; and the presence of open biowaste boxes affect endotoxin levels in laboratories.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号