首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   436篇
  免费   5篇
  国内免费   11篇
安全科学   16篇
废物处理   45篇
环保管理   45篇
综合类   56篇
基础理论   84篇
污染及防治   155篇
评价与监测   39篇
社会与环境   12篇
  2024年   1篇
  2023年   1篇
  2022年   7篇
  2021年   6篇
  2020年   3篇
  2019年   6篇
  2018年   8篇
  2017年   11篇
  2016年   11篇
  2015年   7篇
  2014年   16篇
  2013年   39篇
  2012年   18篇
  2011年   38篇
  2010年   20篇
  2009年   28篇
  2008年   37篇
  2007年   46篇
  2006年   34篇
  2005年   15篇
  2004年   20篇
  2003年   15篇
  2002年   9篇
  2001年   7篇
  2000年   11篇
  1999年   3篇
  1998年   5篇
  1997年   6篇
  1996年   4篇
  1995年   2篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1976年   2篇
排序方式: 共有452条查询结果,搜索用时 218 毫秒
401.
The current food waste leachate (FWL) disposal practice in Korea warrants urgent attention and necessary action to develop an innovative and sustainable disposal strategy, which is both environmentally friendly and economically beneficial. In this study, methane production by FWL injection into a municipal solid waste landfill with landfill gas (LFG) recovery facility was evaluated for a period of more than 4 months. With the target of recovering LFG with methane content ~50%, optimum LFG extraction rate was decided by a trial and error approach during the field investigation in five different phases. The results showed that, upon FWL injection, LFG extraction rate of ~20 m(3)/h was reasonable to recover LFG with methane content ~58%. Considering the estimated methane production potential of 31.7 m(3) CH(4) per ton of FWL, methane recovery from the landfill was enhanced by 14%. The scientific findings of this short-term investigation indicates that FWL can be injected into the existing sanitary landfills to tackle the present issue and such landfills with efficient liner and gas collection facility can be utilized as absolute and sustainable environmental infrastructures.  相似文献   
402.
Journal of Material Cycles and Waste Management - The study conducted basic component analyses including three component analyses, elementary analysis and heavy metal content and BMP test according...  相似文献   
403.
This study estimated the potential effects of pesticide drift on terrestrial ecosystems outside target areas, for the Dutch situation. A series of field trials was conducted to estimate the effects of drift on different species groups at different distances from a treated plot for different categories of pesticide: herbicides, fungicides and insecticides. Measurements of the pesticide drift deposition resulting from standard agricultural practice were used to model deposition outside the treated area. These data were then combined with national statistics on cropland and pesticide use to assess the ecological effects of pesticide drift for the Netherlands as a whole. Three scenarios were considered: the recent past (1998), the present (2005) and an optimised scenario based on 'best available practice' (2010). In the recent past the impact of herbicide drift on sensitive life stages non-target vascular plants is estimated to have exceeded the 50% effect level on 59% of adjacent linear landscape elements such as ditch banks and hedgerows. For the impact of insecticides and fungicides on non-target insects and fungi this 50% effect figure was 29% and 28% of linear elements, respectively. In the present situation, with (narrow) unsprayed buffer zones and other measures in place, these percentages are down to 41% for herbicides, 21% for insecticides and 14% for fungicides. In the optimised scenario, with a greater buffer width of 2.25m for potatoes (compared to 1.50m in 2005) and 1m for other crops (compared to 0.25 and 0.5m in 2005) and 'best available practice', these percentages can be cut to zero. In natural areas located within farming regions the 10% effect level can be reduced from 31% of such areas (1998) to 0% under conditions of 'best available practice'.  相似文献   
404.
The aim of this field study was to determine the concentrations and emissions of ammonia and hydrogen sulfide in different types of pig buildings in Korea to allow objective comparison between pig housing types in Korea and other countries. Concentrations of ammonia and hydrogen sulfide in the pig buildings averaged 7.5ppm and 286.5ppb and ranged from 0.8 to 21.4ppm and from 45.8 to 1235ppb, respectively. The mean emissions of ammonia and hydrogen sulfide per pig (normalized to 75kg liveweight) and area (m2) from pig buildings were 250.2 and 37.8mg/h/pig and 336.3 and 50.9mg/h/m2, respectively. Ammonia and hydrogen sulfide concentrations and emissions were higher in the pig buildings managed with deep-pit manure systems with slats and mechanical ventilation than in other housing types.  相似文献   
405.
Her N  Amy G  Chung J  Yoon J  Yoon Y 《Chemosphere》2008,70(3):495-502
Natural organic matter (NOM) characteristics were determined for three ground waters exhibiting different water quality conditions. The water quality of the three feed waters collected at various water table depths was characterized by XAD-8/-4 resin adsorption, high performance size exclusion chromatography with ultraviolet and dissolved organic carbon (DOC) detections, and Fourier transform infrared spectroscopy (FTIR) to determine NOM fractionation, molecular weight, and NOM functional groups, respectively. Systematic studies were conducted to identify potential NOM foulants in ground water for nanofiltration (NF) membrane fouling. The results show that the hydrophobic fraction of NOM in all of the samples was significantly high (71-93%) compared to the hydrophilic (1.7-22.6%) and transphilic (5.3-6.6%) fractions. However, insignificant flux-decline (less than 5%) was observed for the highest DOC (36.9 mg l(-1)) and hydrophobic NOM (93%) containing groundwater compared to the other lesser DOC and hydrophobic NOM containing ground waters. This is presumably due to either higher fractions of hydrophilic and transphilic NOM or inorganic interactions that may be major foulants. Based on FTIR, aromatic foulants were observed at 1662 cm(-1) (CO-NH2 or CO conjugated with aromatic rings) for the fouled NF membrane with the relatively low DOC source waters. The contact angle of the clean membrane (52 degrees ) decreased with fouling up to 42-47 degrees for fouled membranes with the various samples.  相似文献   
406.
407.
In the Ag(II)/Ag(I) based mediated electrochemical oxidation (MEO) process, the spent waste from the electrochemical cell, which is integrated with the scrubber columns, contains high concentrations of precious silver as dissolved ions in both the anolyte and the catholyte. This work presents an electrochemical developmental study for the recovery of silver from simulated waste water from Ag(II)/Ag(I) based MEO process. Galvanostatic method of silver deposition on Ti cathode in an undivided cell was used, and the silver recovery rate kinetics of silver deposition was followed. Various experimental parameters, which have a direct bearing on the metal recovery efficiency, were optimized. These included studies with the nitric acid concentration (0.75-6M), the solution stirring rate (0-1400 rpm), the inter-electrode distance between the anode and the cathode (2-8 cm), the applied current density (29.4-88.2 mA cm(-2)), and the initial Ag(I) ion concentration (0.01-0.2M). The silver recovered by the present electrodeposition method was re-dissolved in 6M nitric acid and subjected to electrooxidation of Ag(I) to Ag(II) to ascertain its activity towards Ag(II) electrogeneration from Ag(I), which is a key factor for the efficient working of MEO process. Our studies showed that the silver metal recovered by the present electrochemical deposition method could be reused repeatedly for MEO process with no loss in its electrochemical activity. Some work on silver deposition from sulfuric acid solution of different concentrations was also done because of its promising features as the catholyte in the Ag(II) generating electrochemical cell used in MEO process, which include: (i) complete elimination of poisonous NO(x) gas liberation in the cathode compartment, (ii) reduced Ag(+) ion migration across Nafion membrane from anolyte to catholyte thereby diminished catholyte contamination, and (iii) lower cell voltage and hence lesser power consumption.  相似文献   
408.
An existing multiphase flow simulator was modified in order to determine the effects of four mechanisms on NAPL mass removal in a strongly layered heterogeneous vadose zone during soil vapor extraction (SVE): a) NAPL flow, b) diffusion and dispersion from low permeability zones, c) slow desorption from sediment grains, and d) rate-limited dissolution of trapped NAPL. The impacts of water and NAPL saturation distribution, NAPL-type (i.e., free, residual, or trapped) distribution, and spatial heterogeneity of the permeability field on these mechanisms were evaluated. Two different initial source zone architectures (one with and one without trapped NAPL) were considered and these architectures were used to evaluate seven different SVE scenarios. For all runs, slow diffusion from low permeability zones that gas flow bypassed was a dominant factor for diminished SVE effectiveness at later times. This effect was more significant at high water saturation due to the decrease of gas-phase relative permeability. Transverse dispersion contributed to fast NAPL mass removal from the low permeability layer in both source zone architectures, but longitudinal dispersion did not affect overall mass removal time. Both slow desorption from sediment grains and rate-limited mass transfer from trapped NAPL only marginally affected removal times. However, mass transfer from trapped NAPL did affect mass removal at later time, as well as the NAPL distribution. NAPL flow from low to high permeability zones contributed to faster mass removal from the low permeability layer, and this effect increased when water infiltration was eliminated. These simulations indicate that if trapped NAPL exists in heterogeneous porous media, mass transfer can be improved by delivering gas directly to zones with trapped NAPL and by lowering the water content, which increases the gas relative permeability and changes trapped NAPL to free NAPL.  相似文献   
409.
In this study, a model experiment in a long road tunnel employing the longitudinal ventilation system with a ventilation shaft is carried out during a fire accident to determine the optimum exhaust airflow rate through the ventilation shaft. The appropriate operation of the shaft fan according to the position of fire is investigated, and the optimum exhaust airflow rate for prevention of smoke spreading through the tunnel is determined based on the entire exhaust of both smoke and airflow generated by fire and jet fan operation, respectively. As a result of using the amount of smoke, the critical air velocity produced by jet fans, the effective cross-sectional area of a tunnel and the correction factor, a formula for exhaust airflow rate is drived. In addition, a correction factor (α = 1.1) for the thermal expansion caused by heat of a 20 MW fire is determined theoretically and experimentally. It is expected that this study will contribute to plan the shaft operation for the emergency ventilation as well as provide the preliminary data to design the airflow rate of shaft.  相似文献   
410.
Medical waste management in Korea   总被引:2,自引:0,他引:2  
The management of medical waste is of great importance due to its potential environmental hazards and public health risks. In the past medical waste was often mixed with municipal solid waste and disposed of in residential waste landfills or improper treatment facilities (e.g. inadequately controlled incinerators) in Korea. In recent years, many efforts have been made by environmental regulatory agencies and waste generators to better manage the waste from healthcare facilities. This paper presents an overview of the current management practices of medical waste in Korea. Information regarding generation, composition, segregation, transportation, and disposal of medical wastes is provided and discussed. Medical waste incineration is identified as the most preferred disposal method and will be the only available treatment option in late 2005. Faced with increased regulations over toxic air emissions (e.g. dioxins and furans), all existing small incineration facilities that do not have air pollution control devices will cease operation in the next few years. Large-scale medical waste incinerators would be responsible for the treatment of medical waste generated by most healthcare facilities in Korea. It is important to point out that there is a great potential to emit air toxic pollutants from such incinerators if improperly operated and managed, because medical waste typically contains a variety of plastic materials such as polyvinyl chloride (PVC). Waste minimization and recycling, control of toxic air emissions at medical waste incinerators, and alternative treatment methods to incineration are regarded to be the major challenges in the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号