首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2601篇
  免费   35篇
  国内免费   171篇
安全科学   132篇
废物处理   223篇
环保管理   313篇
综合类   480篇
基础理论   437篇
环境理论   1篇
污染及防治   878篇
评价与监测   213篇
社会与环境   92篇
灾害及防治   38篇
  2023年   17篇
  2022年   52篇
  2021年   45篇
  2020年   25篇
  2019年   48篇
  2018年   81篇
  2017年   72篇
  2016年   100篇
  2015年   70篇
  2014年   91篇
  2013年   220篇
  2012年   138篇
  2011年   179篇
  2010年   116篇
  2009年   142篇
  2008年   153篇
  2007年   179篇
  2006年   139篇
  2005年   128篇
  2004年   112篇
  2003年   113篇
  2002年   110篇
  2001年   78篇
  2000年   47篇
  1999年   32篇
  1998年   27篇
  1997年   24篇
  1996年   23篇
  1995年   18篇
  1994年   23篇
  1993年   22篇
  1992年   10篇
  1991年   20篇
  1990年   11篇
  1989年   9篇
  1988年   10篇
  1986年   9篇
  1985年   8篇
  1984年   7篇
  1983年   7篇
  1982年   11篇
  1981年   10篇
  1980年   9篇
  1978年   6篇
  1976年   5篇
  1973年   5篇
  1972年   6篇
  1971年   6篇
  1970年   4篇
  1969年   5篇
排序方式: 共有2807条查询结果,搜索用时 15 毫秒
991.
In this research, in order to develop technology/country-specific emission factors of methane (CH4) and nitrous oxide (N2O), a total of 585 samples from eight gas-fired turbine combined cycle (GTCC) power plants were measured and analyzed. The research found that the emission factor for CH4 stood at “0.82 kg/TJ”, which was an 18 % lower than the emission factor for liquefied natural gas (LNG) GTCC “1 kg/TJ” presented by Intergovernmental Panel on Climate Change (IPCC). The result was 8 % up when compared with the emission factor of Japan which stands at “0.75 kg/TJ”. The emission factor for N2O was “0.65 kg/TJ”, which is significantly lower than “3 kg/TJ” of the emission factor for LNG GTCC presented by IPCC, but over six times higher than the default N2O emission factor of LNG. The evaluation of uncertainty was conducted based on the estimated non-CO2 emission factors, and the ranges of uncertainty for CH4 and N2O were between ?12.96 and +13.89 %, and ?11.43 and +12.86 %, respectively, which is significantly lower than uncertainties presented by IPCC. These differences proved that non-CO2 emissions can change depending on combustion technologies; therefore, it is vital to establish country/technology-specific emission factors.  相似文献   
992.
993.
This study focuses on the Quaternary stratigraphy, sediment composition, mineralogy, and geochemistry of arsenic (As)-contaminated alluvial aquifers in the Ganges–Brahmaputra floodplain in the central Bangladesh. Arsenic concentrations in 85 tubewells in Manikganj area, 70 km northwest of Dhaka City, range from 0.25 µg/L to 191 µg/L with a mean concentration of 33 µg/L. Groundwater is mainly Ca–HCO3 type with high concentrations of dissolved As, Fe, and Mn, but low level of SO4. The uppermost aquifer occurs between 10 m and 80 m below the surface that has a mean arsenic concentration of 35 µg/L. Deeper aquifer (> 100 m depth) has a mean arsenic concentration of 18 µg/L. Sediments in the upper aquifer are mostly gray to dark-gray, whereas sediments in the deep aquifer are mostly yellowing-gray to brown. Quartz, feldspar, mica, hornblende, garnet, kyanite, tourmaline, magnetite, ilmenite are the major minerals in sediments from both aquifers. Biotite and potassium feldspar are dominant in shallow aquifer, although plagioclase feldspar and garnet are abundant in deep aquifer sediments. Sediment composition suggests a mixed provenance with sediment supplies from both orogenic belts and cratons. High arsenic concentrations in sediments are found within the upper 50 m in drilled core samples. Statistical analysis shows that As, Fe, Mn, Ca, and P are strongly correlated in sediments. Concentrations of Cd, Cu, Ni, Zn, and Bi also show strong correlations with arsenic in the Manikganj sediment cores. Authigenic goethite concretions, possibly formed by bacteria, are found in the shallow sediments, which contain arsenic of a concentration as high as 8.8 mg/kg. High arsenic concentrations in aquifers are associated with fine-grained sediments that were derived mostly from the recycled orogens and relatively rapidly deposited mainly by meandering channels during the Early to Middle Holocene rising sea-level conditions.  相似文献   
994.
Hydrogeologic and hydrochemical data for subway tunnel seepage waters in Seoul (Republic of Korea) were examined to understand the effect of underground tunnels on the degradation of urban groundwater. A very large quantity of groundwater (up to 63 million m3 year− 1) is discharged into subway tunnels with a total length of 287 km, resulting in a significant drop of the local groundwater table and the abandonment of groundwater wells. For the tunnel seepage water samples (n = 72) collected from 43 subway stations, at least one parameter among pathogenic microbes (total coliform, heterotrophic bacteria), dissolved Mn and Fe, NH4+, NO3, turbidity, and color exceeded the Korean Drinking Water Standards. Locally, tunnel seepage water was enriched in dissolved Mn (avg. 0.70 mg L− 1, max. 5.58 mg L− 1), in addition to dissolved Fe, NH4+, and pathogenic microbes, likely due to significant inflow of sewage water from broken or leaking sewer pipes.Geochemical modeling of redox reactions was conducted to simulate the characteristic hydrochemistry of subway tunnel seepage. The results show that variations in the reducing conditions occur in urban groundwater, dependent upon the amount of organic matter-rich municipal sewage contaminating the aquifer. The organic matter facilitates the reduction and dissolution of Mn- and Fe-bearing solids in aquifers and/or tunnel construction materials, resulting in the successive increase of dissolved Mn and Fe. The present study clearly demonstrates that locally significant deterioration of urban groundwater is caused by a series of interlinked hydrogeologic and hydrochemical changes induced by underground tunnels.  相似文献   
995.
Lee EH  Cho KS 《Chemosphere》2008,71(9):1738-1744
Cyclohexane is a recalcitrant compound that is more difficult to degrade than even n-alkanes or monoaromatic hydrocarbons. In this study, a cyclohexane-degrading consortium was obtained from oil-contaminated soil by an enrichment culture method. Based on a 16S rDNA polymerase chain reaction-denaturing gradient gel electrophoresis method, this consortium was identified as comprising Alpha-proteobacteria, Actinobacteria, and Gamma-proteobacteria. One of these organisms, Rhodococcus sp. EC1, was isolated and shown to have excellent cyclohexane-degrading ability. The maximum specific cyclohexane degradation rate (Vmax) for EC1 was 246 micromol g-DCW(-1) (dry cell weight)h(-1). The optimum conditions of cyclohexane degradation were 25-35 degrees C and pH 6-8. In addition to its cyclohexane degradation abilities, EC1 was also able to strongly degrade hexane, with a maximum specific hexane degradation rate of 361 micromol g-DCW(-1)h(-1). Experiments using 14C-hexane revealed that EC1 mineralized 40% of hexane into CO2 and converted 53% into biomass. Moreover, EC1 could use other hydrocarbons, including methanol, ethanol, acetone, methyl tert-butyl ether, pyrene, diesel, lubricant oil, benzene, toluene, ethylbenzene, m-xylene, p-xylene and o-xylene. These findings collectively suggest that EC1 may be a useful biological resource for removal of cyclohexane, hexane, and other recalcitrant hydrocarbons.  相似文献   
996.
Feasibility of phosphate fertilizer to immobilize cadmium in a field   总被引:2,自引:0,他引:2  
Hong CO  Lee do K  Kim PJ 《Chemosphere》2008,70(11):2009-2015
To reduce effectively cadmium (Cd) phytoextractability by phosphate fertilizer in Cd contaminated soil, fused and superphosphate (FSP) was applied at the rate of 0, 33.5 (recommendation level), 167.5, and 335 kg P ha−1 for radish (Raphanus sativa L.). Unlike from what we expected, soil Cd extractability and Cd concentration in radish increased with increasing FSP application in the field. To determine the effect of FSP on Cd immobilization, FSP was mixed with the selected soil at the rate of 0, 200, 400, 800, and 1600 mg P kg−1 and then incubated for 8 weeks. As observed in the field study, NH4OAc extractable Cd concentration increased slightly with FSP addition up to 400 mg P kg−1 and thereafter dramatically decreased upon increasing its application rate. Soil pH and negative charge were decreased at low level of FSP application up to 400 mg P kg−1, but thereafter continually increased with increasing application level. This could be indirect evidence that net soil negative charge was increased by the specific adsorption of phosphate at the high rate of FSP application over 400 mg P kg−1. The labile Cd fraction (water soluble and exchangeable + acidic fraction) increased with increasing FSP application by 400 mg P kg−1 and thereafter gradually decreased with corresponding increase in unlabile fraction (oxidizable and residual fraction). Based on these results, FSP might be applied with a very high rate over 800 mg P kg−1 to decrease Cd extractability in the selected field. However, this level is equivalent to 1440 kg P ha−1, which is about 43 times higher than the recommendation levels for radish production and resulted in a significant increase in water soluble P concentration creating a new environmental problem. Therefore, the feasibility of FSP to reduce Cd extractability in the field is very low.  相似文献   
997.
Hyun S  Lee LS 《Chemosphere》2008,70(3):503-510
Information on how cosolvents affect sorption of ionizable chemicals by soils with heterogeneous variable-charge mineral surface domains is sparse. In this study, the effect of soil-solution pH in methanol/water solutions on sorption of pentachlorophenol (PCP) by variable-charge soils with a range of hydrophilic (f Hphilic) and hydrophobic (f Hphobic) sorption domains was characterized. PCP sorption by 10 variable-charge soils was measured as a function of apparent pH (pH app) and methanol volume fraction (fc8) decreased log-linearly with increasing fc, but the slope of the relationship was less for anionic PCP. The empirical solvent-sorbent interaction term for anionic PCP (alpha i) was inversely correlated with f Hphilic (r2=0.82), which is consistent with methanol-induced increases in anion exchange. For neutral PCP, the empirical term (alpha n) was positively correlated with f Hphobic (r2=0.84), supporting methanol-induced increases in solution and sorbent hydrophobicity. Sorption of PCP by two soils with varying f Hphilic in the pH app range from 3 to 8 at fc相似文献   
998.
Removal of phosphate from water by a highly selective La(III)-chelex resin   总被引:2,自引:0,他引:2  
Wu RS  Lam KH  Lee JM  Lau TC 《Chemosphere》2007,69(2):289-294
A new polymer ligand exchanger (PLE) has been developed for the removal of phosphate in wastewater. This PLE, consisting of lanthanum(III) bound to chelex-100 resin, was prepared by passing LaCl3 solution through a column of chelex-100. Uptake of phosphate from water by this La-chelex resin was investigated in the column mode. The La-chelex resin was able to remove phosphate efficiently from water, and the uptake of phosphate was not affected by the presence of large amounts of anions (0.1M) such as chloride and sulfate. The La-chelex resin was also able to efficiently remove phosphate from seawater to <0.1mg-Pl(-1), and regenerated for reuse by removing the sorbed phosphate by eluting with 6M HCl.  相似文献   
999.
1000.
Estimates of emissions of SO2, NOx, HCl and NH3 have been made for a densely populated region of the UK, the North-West of England, using data on power generation, incinerator plant capacity, fuel usage and animal and human population statistics. The spatial distributions of SO2 and NOx emissions are quite different, reflecting their different source strengths. The emissions from motor vehicles make up 52% of the NOx emissions from the North-West of England, whilst those from fossil-fuel-fired power stations make up 20%. The emissions of fossil-fuel-fired power stations make up 58% of SO2 emissions from the North-West. A large fossil-fuel-fired power station is the largest known point source for emissions of SO2, NOx and HCl. The largest contribution to NH3 emissions in the North-West is from cattle. Humans may contribute some NH3 to overall emissions but there is considerable uncertainty as to how much is emitted and what fraction of this is deposited within buildings. The uncertainties in the methodologies used are high-lighted and, where possible, recommendations are made as to how future emissions estimates might be improved. Potential reductions in emissions of SO2, NOx and HCl are discussed under basic scenarios of planned power station closures in the area and the compliance of the electricity generation industry with the European Community Directive on Large Combustion Plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号