首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   593篇
  免费   13篇
  国内免费   7篇
安全科学   18篇
废物处理   51篇
环保管理   76篇
综合类   47篇
基础理论   149篇
环境理论   1篇
污染及防治   201篇
评价与监测   42篇
社会与环境   11篇
灾害及防治   17篇
  2022年   8篇
  2021年   9篇
  2020年   4篇
  2019年   9篇
  2018年   12篇
  2017年   15篇
  2016年   15篇
  2015年   13篇
  2014年   20篇
  2013年   50篇
  2012年   33篇
  2011年   28篇
  2010年   23篇
  2009年   34篇
  2008年   34篇
  2007年   43篇
  2006年   28篇
  2005年   21篇
  2004年   23篇
  2003年   23篇
  2002年   15篇
  2001年   14篇
  2000年   9篇
  1999年   11篇
  1998年   7篇
  1997年   3篇
  1996年   6篇
  1995年   4篇
  1994年   5篇
  1993年   6篇
  1992年   3篇
  1991年   5篇
  1990年   4篇
  1989年   6篇
  1988年   6篇
  1987年   7篇
  1986年   5篇
  1985年   3篇
  1984年   3篇
  1983年   5篇
  1981年   2篇
  1979年   7篇
  1978年   4篇
  1977年   4篇
  1974年   2篇
  1973年   2篇
  1972年   3篇
  1971年   3篇
  1970年   4篇
  1967年   3篇
排序方式: 共有613条查询结果,搜索用时 78 毫秒
541.
Trichloroethylene (TCE) is one of the most hazardous organic pollutants in groundwater. Biochar produced from agricultural waste materials could serve as a novel carbonaceous adsorbent for removing organic contaminants from aqueous media. Biochars derived from pyrolysis of soybean stover at 300 °C and 700 °C (S-300 and S-700, respectively), and peanut shells at 300 °C and 700 °C (P-300 and P-700, respectively) were utilized as carbonaceous adsorbents to study batch aqueous TCE remediation kinetics. Different rate-based and diffusion-based kinetic models were adopted to understand the TCE adsorption mechanism on biochars. With an equilibrium time of 8–10 h, up to 69 % TCE was removed from water. Biochars produced at 700 °C were more effective than those produced at 300 °C. The P-700 and S-700 had lower molar H/C and O/C versus P-300 and S-300 resulting in high aromaticity and low polarity accompanying with high surface area and high adsorption capacity. The pseudo-second order and intraparticle diffusion models were well fitted to the kinetic data, thereby, indicating that chemisorption and pore diffusion were the dominating mechanisms of TCE adsorption onto biochars.  相似文献   
542.
Carbonaceous species (organic carbon [OC] and elemental carbon [EC]) and inorganic ions of particulate matter less than 2.5 μm (PM2.5) were measured to investigate the chemical characteristics of long-range-transported (LTP) PM2.5 at Gosan, Jeju Island, in Korea in the spring and fall of 2008–2012 (excluding 2010). On average, the non-sea-salt (nss) sulfate (4.2 µg/m3) was the most dominant species in the spring, followed by OC (2.6 µg/m3), nitrate (2.1 µg/m3), ammonium (1.7 µg/m3), and EC (0.6 µg/m3). In the fall, the nss-sulfate (4.7 µg/m3) was also the most dominant species, followed by OC (4.0 µg/m3), ammonium (1.7 µg/m3), nitrate (1.1 µg/m3), and EC (0.7 µg/m3). Both sulfate and OC were higher in the fall than in the spring, possibly due to more common northwest air masses (i.e., coming from China and Korea polluted areas) and more frequent biomass burnings in the fall. There was no clear difference in the EC between the spring and fall. The correlation between OC and EC was not strong; thus, the OC measured at Gosan was likely transported across a long distance and was not necessarily produced in a manner similar to the EC. Distinct types of LTP events (i.e., sulfate-dominant LTP versus OC-dominant LTP) were observed. In the sulfate-dominant LTP events, air masses directly arrived at Gosan without passing over the Korean Peninsula from the industrial area of China within 48 hr. During these events, the aerosol optical depth (AOD) increased to 1.63. Ionic balance data suggest that the long-range transported aerosols are acidic. In the OC-dominant LTP event, a higher residence time of air masses in Korea was observed (the air masses departing from the mainland of China arrived at the sampling site after passing Korea within 60–80 hr).

Implications:?In Northeast Asia, various natural and anthropogenic sources contribute to the complex chemical components and affect local/regional air quality and climate change. Chemical characteristics of long-range-transported (LTP) PM2.5 were investigated during spring and fall of 2008, 2009, 2011, and 2012. Based on air mass types, sulfate-dominant LTP and OC-dominant LTP were observed. A long-term variation and chemical characteristics of PM2.5 along with air mass and satellite data are required to better understand long-range-transported aerosols.  相似文献   
543.
544.
ABSTRACT

It is important to characterize the chemical properties of particulate matter in order to understand how low doses, inhaled by a susceptible population, might cause human health effects. The formation of reactive oxygen species catalyzed by neutral, aqueous extracts of two ambient par-ticulate samples, National Institute of Standards & Technology (NIST) Standard Reference Materials (SRM) 1648 and 1649, and two diesel particulate samples, NIST SRM 1650 and SRM 2975, were measured. The formation of reactive oxygen species was estimated by measuring the formation of malondialdehyde from 2-deoxyribose in the presence of ascorbic acid; H2O2 was not added to this assay. SRM 1649, ambient particulate matter collected from Washington, DC, generated the most malondialdehyde, while SRM 2975, diesel particulate matter collected from a forklift, yielded the least amount. Desferrioxamine inhibited the formation of malondialdehyde from the par-ticulate samples providing additional data to support the observation that transition metals were involved in the generation of reactive oxygen species. Six transition metal sulfates (iron sulfate, copper sulfate, vanadyl sulfate, cobalt sulfate, nickel sulfate, and zinc sulfate) were assayed  相似文献   
545.
Abstract

The purpose of this study was to develop a technology that can convert biogas to synthesis gas (SynGas), a low-emission substituted energy, using a non-thermal-pulsed plasma method. To investigate the characteristics of Syn-Gas production from simulated biogas, the reforming characteristics in relation to variations in pulse frequency, biogas component ratio (C3H8/CO2), vapor flow ratio (H2O/total flow rate [TFR]), biogas velocity, and pulse power were studied. A maximum conversion rate of 49.1% was achieved for the biogas when the above parameters were 500 Hz, 1.5, 0.52, 0.32 m/sec, and 657 W, respectively. Under the above conditions, the dry basis mole fractions of the SynGas were as follows: H2 = 0.645,CH4 = 0.081, C2H2 = 0.067, C3H6 = 0.049, CO = 0.008 and C2H4 = 0.004. The ratio of hydrogen to the other intermediates in the SynGas (H2/ITMs) was 3.1.  相似文献   
546.
Abstract

Satellite sensors have provided new datasets for monitoring regional and urban air quality. Satellite sensors provide comprehensive geospatial information on air quality with both qualitative imagery and quantitative data, such as aerosol optical depth. Yet there has been limited application of these new datasets in the study of air pollutant sources relevant to public policy. One promising approach to more directly link satellite sensor data to air quality policy is to integrate satellite sensor data with air quality parameters and models. This paper presents a visualization technique to integrate satellite sensor data, ground-based data, and back trajectory analysis relevant to a new rule concerning the transport of particulate matter across state boundaries. Overlaying satellite aerosol optical depth data and back trajectories in the days leading up to a known fine particulate matter with an aerodynamic diameter of <2.5 μm (PM2.5) event may indicate whether transport or local sources appear to be most responsible for high PM2.5 levels in a certain location at a certain time. Events in five cities in the United States are presented as case studies. This type of analysis can be used to help understand the source locations of pollutants during specific events and to support regulatory compliance decisions in cases of long distance transport.  相似文献   
547.
Deokjeok Island is located off the west coast of the Korean Peninsula and is a suitable place to monitor the long-range transport of air pollutants from the Asian continent. In addition to pollutants, Asian dust particles are also transported to the island during long-range transport events. Episodic transport of dust and secondary particles was observed during intensive measurements in the spring (March 31-April 11) and fall (October 13-26) of 2009. In this study, the chemical characteristics of long-range-transported particles were investigated based on highly time-resolved ionic measurements with a particle-into-liquid system coupled with an online ion chromatograph (PILS-IC) that simultaneously measures concentrations of cations (Li+, Na , NH4+, K+, Ca2+, Mg2+) and anions (F-, C1-, NO3-, SO42-). The aerosol optical thickness (AOT) distribution retrieved by the modified Bremen Aerosol Retrieval (M-BAER) algorithm from moderate resolution imaging spectroradiometer (MODIS) satellite data confirmed the presence of a thick aerosol plume coming from the Asian continent towards the Korean peninsula. Seven distinctive events involving the long-range transport (LRT) of aerosols were identified and studied, the chemical components of which were strongly related to sector sources. Enrichment of acidic secondary aerosols on mineral dust particles, and even of sea-salt components, during transport was observed in this study. Backward trajectory, chemical analyses, and satellite aerosol retrievals identified two distinct events: a distinctively high [Ca2++Mg2]/[Na+] ratio (>2.0), which was indicative of a preprocessed mineral dust transport event, and a low [Ca2++Mg2+]/[Na+] ratio (<2.0), which was indicative of severe aging of sea-salt components on the processed dust particles. Particulate C1- was depleted by up to 85% in spring and 50% in the fall. A consistent fraction of carbonate replacement (FCR) averaged 0.53 in spring and 0.55 in the fall. Supporting evidences of C1- enrichment on the marine boundary layer prior to a dust front were also found. Supplemental materials are available for this article. Go to the publisher's online edition of the Journal of the Air & Waste Management Association for sector and air mass classifications of clean and LRT cases.  相似文献   
548.
CDISCO, a Microsoft Excel spreadsheet–based model, can be used to assist with the design of in situ chemical oxidation (ISCO) systems using permanganate (MnO4?). The model inputs are the aquifer characteristics (porosity, hydraulic conductivity, effective aquifer thickness, natural oxidant demand, kinetic parameters, contaminant concentrations, etc.), injection conditions (permanganate injection concentration, flow rate, and duration), and unit costs for reagent, drilling, and labor. MnO4? transport in the aquifer is simulated and used to estimate the effective radius of influence (ROI) and required injection point spacing. CDISCO then provides a preliminary cost estimate for the selected design conditions. The user can perform multiple runs of CDISCO to optimize the cost of the ISCO design. Comparisons with analytical and numerical models of nonreactive and reactive transport demonstrate that CDISCO accurately simulates MnO4? transport and consumption. Comparison of CDISCO results with the three‐dimensional heterogeneous simulations show that aquifer volume contact efficiency and contaminant mass treatment efficiency are closely correlated with the ROI overlap factor. © 2011 Wiley Periodicals, Inc.  相似文献   
549.
Perfluorinated compounds (PFCs) measured in surface running waters indicated the existence of different emission sources in eight main city basins. The tap water reflected the contamination pattern and levels in their corresponding source water basins. The daily intakes through tap water consumption ranged from <0.01 to 0.73 ng kg−1 d−1 for perfluorooctanoate (PFOA) and <0.01 to 0.08 ng kg−1 d−1 for perfluorooctanesulfonate (PFOS). Tap water intake-derived exposure accounted for 8.6%-101% (for PFOA) and while <10% (for PFOS) of total daily exposure, which was estimated from Korean serum concentrations using a pharmacokinetic model. Our findings indicate that tap water intake could be an important contributor to PFOA exposure in Korean populations; accordingly, additional efforts are necessary to improve the removal efficiency of perfluorinated compounds (PFCs) in the water purification process. However, more fundamentally the aim would be to reduce the discharge of PFCs from potential sources within the basin.  相似文献   
550.
Abstract

Objective: The purpose of this study is to investigate the injury patterns of noncatastrophic accidents by individual age groups.

Methods: Data were collected from the Korean In-Depth Accident Study database based on actual accident investigation. The noncatastrophic criteria were classified according to U.S. experts from the Centers for Disease Control and Prevention’s recommendations for field triage guidelines of high-risk automobile crash criteria by vehicle intrusions more than 12 in. on occupant sites (including the roof) and more than 18 in. on any site. The Abbreviated Injury Scale (AIS) was used to determine injury patterns for each body region. Severely injured patients were classified as Maximum Abbreviated Injury Scale (MAIS) 3 or higher.

Results: In this study, the most significant injury regions were the head and neck, extremities, and thorax. In addition, the incidence of severe injury among elderly patients was nearly 1.6 times higher than that of non-elderly patients. According to age group, injured body regions among the elderly were the thorax, head and neck, and extremities, in that order. For the non-elderly groups, these were head and neck, extremities, and thorax. Severe injury rates were slightly different for the elderly group (head and neck, abdomen) and non-elderly group (thorax, head and neck).

Conclusions: In both age groups, the rate of severe injury is proportional to an increase in crush extent zone. Front airbag deployment may have a relatively significant relationship to severe injuries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号