Organic matters (OMs) and their oxidization products often influence the fate and transport of heavy metals in the subsurface aqueous systems through interaction with the mineral surfaces. This study investigates the ethanol (EtOH)-mediated As(III) adsorption onto Zn-loaded pinecone (PC) biochar through batch experiments conducted under Box–Behnken design. The effect of EtOH on As(III) adsorption mechanism was quantitatively elucidated by fitting the experimental data using artificial neural network and quadratic modeling approaches. The quadratic model could describe the limiting nature of EtOH and pH on As(III) adsorption, whereas neural network revealed the stronger influence of EtOH (64.5%) followed by pH (20.75%) and As(III) concentration (14.75%) on the adsorption phenomena. Besides, the interaction among process variables indicated that EtOH enhances As(III) adsorption over a pH range of 2 to 7, possibly due to facilitation of ligand–metal(Zn) binding complexation mechanism. Eventually, hybrid response surface model–genetic algorithm (RSM–GA) approach predicted a better optimal solution than RSM, i.e., the adsorptive removal of As(III) (10.47 μg/g) is facilitated at 30.22 mg C/L of EtOH with initial As(III) concentration of 196.77 μg/L at pH 5.8. The implication of this investigation might help in understanding the application of biochar for removal of various As(III) species in the presence of OM. 相似文献
Effective anaerobic treatment of particulate wastes requires solubilization and acid formation prior to methanogenesis. In this case study of a particulate waste from a corn-processing industry, the influence of solids loading in solubilization, acid formation and methanogenesis was studied under mesophilic (35°C) and thermophilic (60°C) conditions. The waste was concentrated by centrifugation to initial suspended solids concentrations (TSSi) of 150 to 350 g/L (15% to 35%). Anaerobic batch tests were conducted for 20 days, and significant solubilization of the particulate organic matter occurred in all cases. The thermophilic systems were more effective than the mesophilic systems with respect to solubilization of particulates, volatile solids destruction, acetic acid uptake, and methane generation. Methanogenesis appreared to be a rate-limiting step at higher TSSi values, indicated by accumulation of volatile organic acids in the batch systems. Slower rates of methane production led to identification of the limiting solids loading for both temperature regimes. The results of this study can be used to evaluate the limitations of a single stage system for anaerobic treatment of organic particulate industrial wastes. 相似文献
Environmental Science and Pollution Research - Coronavirus refers to a group of widespread viruses. The name refers to the specific morphology of these viruses because their spikes look like a... 相似文献
Environmental Science and Pollution Research - Developing countries have depleted their natural resources in economic interest to achieve high economic growth. Current urbanization patterns and... 相似文献
Chromium being one of the major toxic pollutants is discharged from electroplating and chrome tanning processes and is also found in the effluents of dyes,paint pigments,manufacturing units etc.Chromium exists in aqueous systems in both trivalent(Cr^3 )and hexavalent (Cr^6 )forms.The hexavalent form is carcinogenic and toxic to aquatic life,whereas Cr^3 is however comparatively less toxic.This study was undertaken to investigate the total chromium removal from industial effluents by chemical means in order to achieve the Pakistan NEQS level of 1 mg/L by the methods of reduction and precipitation.The study was conducted in four phase Ⅰ,the optimum pH and cost effective reducing agent among the four popular commercial chemicals was selected.As a result,pH of 2 was found to be most suitable and sodium meta bisulfate was found to be the most cost effective reducing agent respectively.Phase Ⅱ showed that lower dose of sodium meta hisulfate was sufficient to obtain 100% efficiency in reducing Cr^6 to Cr^3 ,and it was noted that reaction time had no significance in the whole process.A design curve for reduction process was established which can act as a tool for treatment of industrial effluents.Phase Ⅲ studies indicated the best pH was 8.5 for precipitation of Cr^3 to chromium hydroxide by using lime.An efficiency of 100% was achievable and a settling time of 30 minutes produced clear effluent.Finally in Phase Ⅳ actual waste samples from chrome tanning and electroplating industries,when precipitated at pH of 12 gave 100% efficiency at a settling time of 30 minutes and confirmed that chemical means of reduction and precipitation is a feasible and viable solution for treating chromium wastes from industries. 相似文献
A highly sensitive enzyme immunoassay is described for the detection of atrazine residues in water. Atrazine derivative was conjugated to Bovine Serum Albumin (BSA) to obtain an immunizing antigen and to Horseradish Peroxidase enzyme (POD) to obtain a marker for immunoassay. The formation of these conjugations was confirmed by UV spectroscopy as well as by gel-electrophoresis. Polyclonal antibodies were raised in rabbits by immunization with an atrazine-BSA conjugate containing 29 atrazine residues per BSA molecule. An ELISA on microtitration plates was optimized with peroxidase-atrazine conjugate. The middle of the test (50% B/Bo) was found to be at 90 ng/l, which is well below the maximum concentration permitted by the EC guidelines for drinking water. Detection limits for atrazine of about 1 ng/l could be reached. The assay did not require concentration or cleanup steps for drinking or ground water samples. Validation experiments showed good accuracy and precision. No cross-reactivities were shown by other s-triazines like terbutryn, ametryn, terbuthylazine, des-isopropylatrazine, and de-ethylatrazine except hydroxyatrazine. The latter was present at very low levels that can be calibrated/standardized before analysis or it may be considered as leftover residues of atrazine. Based on these results, it is suggested that this test can be applied to obtain fairly accurate results for atrazine concentration in water samples from different sources. 相似文献
Environmental Science and Pollution Research - Emerging economies are experiencing considerable economic changes due to change in energy demand and CO2 emissions. To explore the link between energy... 相似文献
Pakistan is an agricultural country and due to the shortage of clean water, most of the irrigated area (32,500 ha) of Pakistan was supplied with wastewater (0.876?×?109 m3/year). Concentrations of heavy metals in radish (Raphanus sativus) and turnip (Brassica rapa) taken from vegetable fields in Sargodha, Pakistan, were measured. Untreated wastewater was used persistently for a long time to irrigate these vegetable fields. A control site was selected that had a history of fresh groundwater irrigation. Mean metal concentrations were found for irrigation water, soil, and vegetables. In irrigation water, concentrations of Mo and Pb at three sites and Se at sites II and III were higher than the recommended limits. In vegetables, concentrations of Mo and Pb were above the maximum permissible limits. High bioconcentration factor was observed for Zn (12.61 in R. sativus and 11.72 in B. rapa) at site I and high pollution load index was found for Pb (3.89 in R. sativus and 3.87 in B. rapa) at site II. The differences in metal concentrations found in samples depended upon different soil nature and assimilation capacities of vegetables at different sites which in turn depended upon different environmental cues. The entrance of metal and metalloids to human body may happen through different pathways; however, the food chain is the chief route through which metals are transferred from vegetables to individuals. Health risk index observed for metals, (Mo, As, Ni, Cu, and Pb) higher than 1 indicated high risk through consumption of these vegetables at three sites.