首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18562篇
  免费   410篇
  国内免费   3107篇
安全科学   616篇
废物处理   1297篇
环保管理   1886篇
综合类   5687篇
基础理论   4570篇
污染及防治   5036篇
评价与监测   1354篇
社会与环境   1271篇
灾害及防治   362篇
  2024年   15篇
  2023年   165篇
  2022年   462篇
  2021年   385篇
  2020年   295篇
  2019年   307篇
  2018年   1740篇
  2017年   1713篇
  2016年   1572篇
  2015年   562篇
  2014年   677篇
  2013年   923篇
  2012年   1196篇
  2011年   2092篇
  2010年   1279篇
  2009年   1131篇
  2008年   1524篇
  2007年   1727篇
  2006年   523篇
  2005年   379篇
  2004年   312篇
  2003年   394篇
  2002年   408篇
  2001年   252篇
  2000年   299篇
  1999年   301篇
  1998年   245篇
  1997年   223篇
  1996年   193篇
  1995年   158篇
  1994年   120篇
  1993年   118篇
  1992年   107篇
  1991年   87篇
  1990年   35篇
  1989年   35篇
  1988年   25篇
  1987年   16篇
  1986年   15篇
  1985年   10篇
  1984年   17篇
  1983年   12篇
  1982年   9篇
  1981年   6篇
  1979年   2篇
  1974年   2篇
  1973年   3篇
  1972年   2篇
  1970年   1篇
  1935年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
681.
李仪欢  陈国华  张新梅 《灾害学》2008,23(2):135-140
重大事故应急预案是保证企业应急救援工作快速、高效地开展的关键。应急预案的响应绩效是预案对于预防事故发生和控制事故恶化的实际效果,基于响应绩效的重大事故应急预案编制方法就是将绩效作为核心的思想融入编制的各环节。围绕预案的编制原则、文件要素和编制流程对方法进行介绍,并进一步详细阐述了基于响应绩效的预案编制要点,从而保证预案的完整性、逻辑性、可操作性和指导性四方面的响应绩效要求。  相似文献   
682.
在系统总结陕西省城市改革发展的现状以及防洪减灾存在问题的基础上,指出了洪涝灾害造成的损失,重点说明城市防洪在经济建设中的重要性;针对省情提出了新时期城市防洪建设的思路、防洪策略和奋斗目标.山洪灾害是威胁中小城市安全的主要问题,要建立多元化的投资机制,鼓励和促进城市防洪建设健康发展.  相似文献   
683.
在不同工况下,通过采取不同的岩土体物理力学参数来计算沙坝沟滑坡的稳定系数并分析影响因素,得到影响该滑坡稳定性的主要因素为降雨、地下水作用及人类工程活动,在一定条件下可能成为滑坡失稳破坏的诱导因素。最后为滑坡防治提出一些建议,对滑坡的预测和防护提供依据。  相似文献   
684.
Fan HJ  Chen IW  Lee MH  Chiu T 《Chemosphere》2007,67(8):1647-1652
Due to the growing concern of highly contaminated landfill leachate problems in Taiwan, an innovative advanced catalytic oxidation (FeGAC/H(2)O(2)) process was developed and employed in this research to treat the landfill leachate from central Taiwan. Experimental results indicated that the FeGAC/H(2)O(2) process could effectively remove organic compounds from landfill leachate. The presence of iron oxide coated granular activated carbon (FeGAC) greatly improved the oxidative ability of H(2)O(2) for the removal of humic acids, fulvic acids and non-humic substance from leachate. For instance, at pH 6, the removal efficiencies of FeGAC/H(2)O(2) and H(2)O(2) processes were 70% and 8%, respectively. FeGAC/H(2)O(2) combined both advantages of FeGAC and H(2)O(2) where FeGAC had good organics adsorption ability and could effectively catalyse the hydrogen peroxide oxidation reaction for organics removal.  相似文献   
685.
Song S  Ying H  He Z  Chen J 《Chemosphere》2007,66(9):1782-1788
The decolorization and degradation of CI Direct Red 23, which is suspected to be carcinogenic, were investigated using ozonation combined with sonolysis. The results showed that the combination of ozonation and sonolysis was a highly effective way to remove color from waste water. The operational parameters, namely concentration of the dye, pH, ozone dose and ultrasonic density, were investigated during the process. The decolorization of the dye followed pseudo-first-order kinetics. Increasing the initial concentration of Direct Red 23 led to a decreasing rate constant. The optimum pH for the reaction was 8.0, and both lower and higher pH decreased the removal rate. The effect of the ozone dose on the dye decolorization was much greater than that of the sonolysis density. Intermediates such as naphthalene-2-sulfonic acid, 1-naphthol, urea and acetamide were detected by gas chromatography coupled with mass spectrometry in the absence of pH buffer, while nitrate and sulfate ions and formic, acetic and oxalic acids were detected by ion chromatography. A tentative degradation pathway was proposed without any further quantitative analyses. During the degradation, all nitrogen atoms and phenyl groups of Direct Red 23 were degraded into urea, nitrate ion, nitrogen and formic, acetic and oxalic acids, etc.  相似文献   
686.
Vehicle emission inventory is a critical element for air quality study. This study created systemic methods to establish a vehicle emission inventory in Chinese cities. The methods were used to obtain credible results of vehicle activity in Beijing and Shanghai. On the basis of the vehicle activity data, the International Vehicle Emission model is used to establish vehicle emission inventories. The emissions analysis indicates that 3 t of particulate matter (PM), 199 t of nitrogen oxides (NO(x)), 192 t of volatile organic compounds (VOCs), and 2403 t of carbon monoxide (CO) are emitted from on-road vehicles each day in Beijing, whereas 4 t of PM, 189 t of NO(x), 113 t of VOCs, and 1009 t of CO are emitted in Shanghai. Although common features were found in these two cities (many new passenger cars and a high taxi proportion in the fleet), the emission results are dissimilar because of the different local policy regarding vehicles. The method to quantify vehicle emission on an urban scale can be applied to other Chinese cities. Also, knowing how different policies can lead to diverse emissions is beneficial knowledge for other city governments.  相似文献   
687.
Zhang F  Chen J  Zhang H  Ni Y  Liang X 《Chemosphere》2007,68(9):1716-1722
Dechlorination of octachlorodibenzo-p-dioxin (OCDD) was carried out in ethanol-water (v/v=1:1) solution of NaOH in the presence of Pd/C catalysts with the use of H(2). The substrate was dechlorinated with Pd/C under mild conditions (atmospheric pressure and <100 degrees C) to give a chlorine-free product, dibenzo-p-dioxin (DD), in high yields. After reaction of 3h at 50 degrees C, 95.9% OCDD was degraded to low dechlorinated congeners and the yield of DD was 77.4%. We have also studied the dechlorination selectivity of chlorine atoms on the different substituted positions and postulated the dechlorination pathway of OCDD. For OCDD, the 2-position has higher reactivity than 1-position, but the difference is very small. From the distribution statistics of the intermediates during the reaction, we postulate that the steric effect plays an important role during the reaction and affect the dechlorination pathway of OCDD.  相似文献   
688.
In this paper, continuous production of hydrogen through fermentation with liquid swine manure as substrate was researched using a semi-continuously fed fermenter (8 L in total volume and 4 L in working volume). The pH and temperature for the fermenter were controlled at 5.3 +/- 0.1 and 35 +/- 1 degrees C, respectively, throughout the experiment. Three hydraulic retention times (16, 20, and 24 h) were investigated for their impact on the efficiency and performance of the fermenter in terms of hydrogen yields. The results indicate that hydraulic retention time (HRT) has a strong influence on the fermenter performance. An increasing HRT would increase the variation in hydrogen concentration in the offgas. To produce hydrogen with a fairly consistent concentration, the HRT of the fermenter should not exceed 16 h, which, however, did not appear to be short enough to control methanogenesis because the offgas still contained about 5% methane. When methane content in the offgas exceeded 2%, an inverse linear relationship between hydrogen and methane was observed with a correlation coefficient of 0.9699. To increase hydrogen content in the offgas, methane production has to be limited to below 2%. Also, keeping oxygen content in the fermenter below 1.5% would increase the hydrogen concentration to over 15%. The product to substrate ratio was found to be around 50% for the fermenter system studied, evidenced by the observation that for every 6 liters of manure fermented, 3 liters of pure hydrogen were produced, which was significant and encouraging.  相似文献   
689.
Background, Goals and Scope During the last years the miniaturization of toxicity test systems for rapid and parallel measurements of large quantities of samples has often been discussed. For unicellular algae as well as for aquatic macrophytes, fluorescence-based miniaturized test systems have been introduced to analyze photosystem II (PSII) inhibitors. Nevertheless, high-throughput screening should also guarantee the effect detection of a broad range of toxicants in order to ensure routinely applicable, high-throughput measuring device experiments which can cover a broad range of toxicants and modes of action others than PSII inhibition. Thus, the aim of this study was to establish a fast and reproducible measuring system for non-PSII inhibitors for aquatic macrophyte species to overcome major limitations for use. Methods A newly developed imaging pulse-amplitude-modulated chlorophyll fluorometer (I-PAM) was applied as an effect detector in short-term bioassays with the aquatic macrophyte species Lemna minor. This multiwell-plate based measuring device enabled the incubation and measurement of up to 24 samples in parallel. The chemicals paraquat-dichloride, alizarine and triclosan were chosen as representatives for the toxicant groups of non-PSII herbicides, polycyclic aromatic hydrocarbons (PAHs) and pharmaceuticals and personal care products (PPCPs), which are often detected in the aquatic environment. The I-PAM was used (i) to establish and validate the sensitivity of the test system to the three non-PSII inhibitors, (ii) to compare the test systems with standardized and established biotests for aquatic macrophytes, and (iii) to define necessary time scales in aquatic macrophyte testing. For validation of the fluorescence-based assay, the standard growth test with L. minor (ISO/DIS 20079) was performed in parallel for each chemical. Results The results revealed that fluorescence-based measurements with the I-PAM allow rapid and parallel analysis of large amounts of aquatic macrophyte samples. The I-PAM enabled the recording of concentration-effect-curves with L. minor samples on a 24-well plate with single measurements. Fluorescence-based concentration-effect-curves could be detected for all three chemicals after only 1 h of incubation. After 4–5 h incubation time, the maximum inhibition of fluorescence showed an 80–100% effect for the chemicals tested. The EC50 after 24 h incubation were estimated to be 0.06 mg/L, 0.84 mg/L and 1.69 mg/L for paraquatdichloride, alizarine and triclosan, respectively. Discussion The results obtained with the I-PAM after 24 h for the herbicide paraquat-dichloride and the polycyclic aromatic hydrocarbon alizarine were in good accordance with median effective concentrations (EC50s) obtained by the standardized growth test for L. minor after 7 d incubation (0.09 mg/L and 0.79 mg/L for paraquat-dichloride and alizarine, respectively). Those results were in accordance with literature findings for the two chemicals. In contrast, fluorescence-based EC50 of the antimicrobial agent triclosan proved to be two orders of magnitude greater when compared to the standard growth test with 7 d incubation time (0.026 mg/L) as well as with literature findings. Conclusion Typically, aquatic macrophyte testing is very time consuming and relies on laborious experimental set-ups. The I-PAM measuring device enabled fast effect screening for the three chemicals tested. While established test systems for aquatic macrophytes need incubation times of ≥ 7 d, the I-PAM can detect inhibitory effects much earlier (24 h), even if inhibition of chemicals is not specifically associated with PSII. Thus, the fluorescence-based bioassay with the I-PAM offers a promising approach for the miniaturization and high-throughput testing of chemicals with aquatic macrophytes. For the chemical triclosan, however, the short-term effect prediction with the I-PAM has been shown to be less sensitive than with long-term bioassays, which might be due to physicochemical substance properties such as lipophilicity. Recommendations and Perspectives The results of this study show that the I-PAM represents a promising tool for decreasing the incubation times of aquatic macrophyte toxicity testing to about 24 h as a supplement to existing test batteries. The applicability of this I-PAM bioassay on emergent and submerged aquatic macrophyte species should be investigated in further studies. Regarding considerations that physicochemical properties of the tested substances might play an important role in microplate bioassays, the I-PAM bioassay should either be accompanied by evaluating physicochemical properties modeled from structural information prior to an experimental investigation, or by intensified chemical analyses to identify and determine nominal concentrations of the toxicants tested. The chemicals paraquat-dichloride, alizarine and triclosan were chosen as representatives for the toxicant groups of non-PSII herbicides, PAHs and PPCPs which are often detected in the aquatic environment. Nevertheless, in order to ensure a routinely applicable measuring device, experiments with a broader range of toxicants and samples of surface and/or waste waters are necessary. ESS-Submission Editor: Dr. Markus Hecker (MHecker@Entrix.com)  相似文献   
690.
Huang SS  Liao QL  Hua M  Wu XM  Bi KS  Yan CY  Chen B  Zhang XY 《Chemosphere》2007,67(11):2148-2155
We investigated concentrations of Hg, Cd, Pb, Zn, Cu, As, Ni, and Cr in samples of soil, cereal, and vegetables from Yangzhong district, China. Compared to subsoils, the sampled topsoils are enriched in Hg, Cd, Cu, Pb, Zn, and As. High levels of Cd and Hg are observed in most agricultural soils. Concentrations of Cr and Ni show little spatial variation, and high Cu, Pb, and Zn contents correspond well to areas of urban development. High As contents are primarily recorded at the two ends of the sampled alluvion. The contents of Cd, Hg, and total organic carbon (TOC) increase gradually to maximum values in the upper parts of soil profiles, while Cr and Ni occur in low concentrations within sampled profiles. As, Pb, Cu, and Zn show patterns of slight enrichment within the surface layer. Compared to data obtained in 1990, Cd and Hg show increased concentrations in 2005; this is attributed to the long-term use of agrochemicals. Cr and Ni contents remained steady over this interval because they are derived from the weathering of parent material and subsequent pedogenesis. The measured As, Cu, Pb, and Zn contents show slight increases over time due to atmospheric deposition of material sourced from urban anthropogenic activity. Low concentrations of heavy metals are recorded in vegetables and cereals because the subalkaline environment of the soil limits their mobility. Although the heavy metal concentrations measured in this study do not pose a serious health risk, they do affect the quality of agricultural products.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号