首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11427篇
  免费   480篇
  国内免费   69篇
安全科学   130篇
废物处理   830篇
环保管理   1371篇
综合类   1916篇
基础理论   3399篇
污染及防治   2184篇
评价与监测   1094篇
社会与环境   988篇
灾害及防治   64篇
  2025年   5篇
  2024年   30篇
  2023年   50篇
  2022年   102篇
  2021年   93篇
  2020年   65篇
  2019年   83篇
  2018年   1556篇
  2017年   1469篇
  2016年   1291篇
  2015年   241篇
  2014年   151篇
  2013年   179篇
  2012年   605篇
  2011年   1486篇
  2010年   792篇
  2009年   698篇
  2008年   978篇
  2007年   1329篇
  2006年   78篇
  2005年   74篇
  2004年   73篇
  2003年   117篇
  2002年   141篇
  2001年   65篇
  2000年   42篇
  1999年   31篇
  1998年   30篇
  1997年   23篇
  1996年   14篇
  1995年   12篇
  1994年   7篇
  1993年   11篇
  1992年   11篇
  1991年   10篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1984年   11篇
  1983年   8篇
  1982年   1篇
  1935年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
171.
This contribution reports a novel and cost efficient strategy for nickel ion removal from metal finishing effluents by electro-dissolution of scrap aluminium and iron sacrificial anodes. Electro-coagulation of effluent was carried out at 30 mA/cm2 current density for 60 min. The nickel ion concentration of electroplating effluent was analysed by Atomic Absorption Spectroscopy. SEM images of iron and aluminium scrap anodes were critically analysed. Parameters such as heavy metal removal, anode dissolution rate with respect to heavy metal removal, reaction kinetics and cost estimation have been elaborately studied. Electro-coagulation at 30 mA/cm2 for 60 min using iron and aluminium scrap anodes resulted in 95.9 and 94.1 % nickel ion reduction, respectively, with 0.0094 and 0.0053 g/ppm dissolution rates. The energy consumption for scrap aluminium and iron anodes was 0.0547 kWh/L. Loose internal bonding and spongy surface morphology of used metal scrap render high porosity and active surface area, enhancing reaction rate. Low cost and ready availability of waste scrap makes the process of electro-coagulation economically viable. Thus, the findings from this contribution point decisively at the superiority of waste metal scrap-based anodes for economic and environmentally sustainable heavy metal ion removal from metal finishing effluent.  相似文献   
172.
Nano-ZnO-chitosan bio-composite beads were prepared for the sorption of \({\text{UO}}_{2}^{{2+}}\) from aqueous media. The resulting nano-ZnO/CTS bio-composite beads were characterized by TEM, XRD etc. The sorption of \({\text{UO}}_{2}^{{2+}}\) by bio-composite beads was optimized using RSM. The correlation between four variables was modelled and studied. According to RSM data, correlation coefficients (R2?=?0.99) and probability F-values (F?=?2.24?×?10??10) show that the model fits the experimental data well. Adsorption capacity for nano-ZnO/CTS bio-composite beads was obtained at 148.7 mg/g under optimum conditions. The results indicate that nano-ZnO/CTS bio-composite beads are appropriate for the adsorption of \({\text{UO}}_{2}^{{2+}}\) ions from aqueous media. Also, the suitability of adsorption values to adsorption isotherms was researched and thermodynamic data were calculated.  相似文献   
173.
In this study, dairy cow manure, goat manure, and chicken manure were collected from three farms and analyzed to find out the concentration of Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn. The concentration and potential of mobility and availability of heavy metals were studied in the animal manure samples. BCR Sequential extraction procedure was used to determine the binding forms of the metals. In this study, pseudo total concentrations of Mn and Zn were found out to be predominant in all the types of animal manure samples. According to the results, it was traced that Cr, Cu, and Ni were observed to be at the second highest level while Cd, Co, and Pb were seen at the lowest level in all the manure samples. When extractable amounts of heavy metals are taken into consideration, it is seen that the amount of the mobile fractions of heavy metals except for Cr and Ni are higher in comparison with that of immobile fraction in all the animal manure samples. It was also viewed that Mn, Cd, and Zn are more available in dairy cow manure and chicken manure whereas Cd, Co, and Mn are more available in goat manure.  相似文献   
174.
Compositions of wood-polypropylene composites (WPCs) are prepared through melt compounding followed by injection moulding. WPCs are formulated for eight compositions with a different weight ratio of wood, virgin or recycled polypropylene and coupling agent. WPCs compositions are compared in terms of Melt Flow Index, Tensile, FESEM images, Flexural and crystallinity index for same operating variable conditions. From the results, recycled polypropylene based WPCs are superior in comparison to virgin polypropylene based WPCs. With the addition of 5 % coupling agent in recycled polypropylene-based composites for 45:50 composition, tensile and flexural values of WPCs are higher in comparison to all composition and neat virgin or recycled polypropylene. This work stands for the utilization of waste wood with recycled plastic for replacement of wood and virgin plastic.  相似文献   
175.
Here, the influence of graphene as a coating on the biodegradation process for two different polymers is investigated, poly(butylene adipate-co-terephthalate) (PBAT) (biodegradable) and low-density polyethylene (LDPE) (non-biodegradable). Chemical vapor deposition graphene was transferred to the surface of two types of polymers using the Direct Dry Transfer technique. Polymer films, coated and uncoated with graphene, were buried in a maturated soil for up to 180 days. The films were analyzed before and after exposure to microorganisms in order to obtain information about the integrity of the graphene (Raman Spectroscopy), the biodegradation mechanism of the polymer (molecular weight and loss of weight), and surface changes of the films (atomic force microscopy and contact angle). The results prove that the graphene coating acted as a material to control the biodegradation process the PBAT underwent, while the LDPE covered by graphene only had changes in the surface properties of the film due to the accumulation of solid particles. Polymer films coated with graphene may allow the production of a material that can control the microbiological degradation, opening new possibilities in biodegradable polymer packaging. Regarding the possibility of graphene functionalization, the coating can also be selective for specific microorganisms attached to the surface.  相似文献   
176.
Blends of water—soluble polymers based on Poly vinyl alcohol (PVA) and Polyethylene glycol (PEG) have been prepared by the solution casting technique. The effect of various doses of γ-radiation on the structural properties of PVA/PEG polymer blends with all its compositions has been investigated. From the visual observation of all the blend compositions, it was found that, the best compatibility of the blend is up to 40% PVA/60%PEG. The structure–Property behavior of all the prepared blends before and after γ-irradiation was investigated by IR Spectroscopy, thermogravimetric analysis (TGA), mechanical properties and Scanning electron microscope (SEM). The gel content and the swelling behavior of the PVA/PEG blends were investigated. It was found that the gel content increases with increasing irradiation dose and PVA concentration in the blend. Swelling percent increased as the composition of PEG increased in the blend. The results obtained by FTIR analysis and SEM confirm the existence of possible interaction between PVA and PEG homopolymers. TGA of PVA/PEG blend, before and after γ-irradiation, showed that the unirradiated and irradiated PVA/PEG blends are more stable against thermal decomposition than pure PVA. Improvement in tensile mechanical properties of PVA/PEG blends was occurred.  相似文献   
177.
Bacterial synthesis of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) copolymer [P(3HB-co-3HV)] using the hydrolysate of rice straw waste as a carbon source was affected by the composition of the hydrolysate, which depends highly on the rice straw pretreatment condition. Acid digestion with 2 % sulfuric acid generated larger production of P(3HB-co-3HV) than 6 % sulfuric acid, but 3HV concentration in the copolymer produced with 2 % acid hydrolysate was only 8.8 % compared to 18.1 % with 6 % acid hydrolysate. To obtain a higher 3HV mole fraction for enhanced flexibility of the copolymer, an additional heating was conducted with the 2 % acid hydrolysate after removal of residual rice straw. As the additional heating time increased a higher concentration of levulinic acid was generated, and consequently, the mole fraction of 3HV in P(3HB-co-3HV) increased. Among the conditions tested (i.e., 20-, 40-, 60-min), 60-min additional heating following 2 % sulfuric acid digestion achieved the highest 3HV mole fraction of 22.9 %. However, a longer heating time decreased the P(3HB-co-3HV) productivity, probably due to the increased intermediates concentrations acting as inhibitors in the hydrolysates. Therefore, the use of additional heating needs to consider both the increase in the 3HV mole fraction and the decrease in the P(3HB-co-3HV) productivity.  相似文献   
178.
Studies on the use of natural fibers as replacement to man-made fiber in fiber-reinforced composites have increased and opened up further industrial possibilities. Natural fibers have the advantages of low density, low cost, and biodegradability. However, the main disadvantages of natural fibers in composites are the poor compatibility between fiber and matrix and the relative high moisture sorption. Therefore, chemical treatments are considered in modifying the fiber surface properties. In this paper, the different chemical modifications on natural fibers for use in natural fiber-reinforced composites are reviewed. Chemical treatments including alkali, silane, acetylation, benzoylation, acrylation, maleated coupling agents, isocyanates, permanganate and others are discussed. The chemical treatment of fiber aimed at improving the adhesion between the fiber surface and the polymer matrix may not only modify the fiber surface but also increase fiber strength. Water absorption of composites is reduced and their mechanical properties are improved.  相似文献   
179.
In this work, performance of cow dung (CD) reinforced poly(lactic acid) (PLA) biocomposites was investigated for the potential use in load bearing application. CD of average 4 mm size was blended with PLA at different CD ratios (0–50 wt%) and their effects on the biocomposite properties were studied. The results showed an improvement in the flexural properties, while the tensile and impact strength dropped by 20 and 28% with the addition of 50% CD. The decline in the tensile and impact strength was due to micro-cracking and voids formation at higher CD content. Also, the incorporation of CD slightly decreased the thermal stability of the biocomposite. However, dynamic mechanical properties of the biocomposites generally improved. SEM analysis of tensile and impact fractured surfaces indicated that the CD had a reasonable adhesion with matrix. Moreover, the SEM micrographs of soil burial studies showed an accelerated degradation of higher CD wt% biocomposites.  相似文献   
180.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号