首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2507篇
  免费   160篇
  国内免费   954篇
安全科学   237篇
废物处理   137篇
环保管理   193篇
综合类   1555篇
基础理论   445篇
污染及防治   702篇
评价与监测   129篇
社会与环境   128篇
灾害及防治   95篇
  2024年   13篇
  2023年   72篇
  2022年   142篇
  2021年   150篇
  2020年   124篇
  2019年   108篇
  2018年   123篇
  2017年   138篇
  2016年   101篇
  2015年   160篇
  2014年   202篇
  2013年   212篇
  2012年   221篇
  2011年   219篇
  2010年   160篇
  2009年   154篇
  2008年   193篇
  2007年   138篇
  2006年   147篇
  2005年   86篇
  2004年   60篇
  2003年   84篇
  2002年   88篇
  2001年   86篇
  2000年   63篇
  1999年   55篇
  1998年   51篇
  1997年   43篇
  1996年   51篇
  1995年   36篇
  1994年   38篇
  1993年   21篇
  1992年   20篇
  1991年   11篇
  1990年   8篇
  1989年   7篇
  1988年   8篇
  1987年   5篇
  1986年   3篇
  1984年   2篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
排序方式: 共有3621条查询结果,搜索用时 93 毫秒
541.
采集太原市城区夏季VOCs样品并分析其浓度特征,使用参数修正法得到VOCs初始浓度,分析其来源及对O3生成的贡献.结果显示:太原市城区总VOCs平均浓度为48.13 μg/m3,烷烃(25.52 μg/m3)为主要组分.VOCs浓度呈明显日变化特征,在日间(10:00~14:00)光化学产生O3的关键时段浓度最低.油品挥发、机动车排放、燃煤、植物排放与液化石油气/天燃气(LPG/NG)使用源对修正后环境VOCs的贡献分别为26.89%、25.55%、21.14%、14.99%、11.44%,对O3生成的贡献分别为21.44%、33.10%、24.07%、13.77%、7.62%.机动车为新鲜排放气团VOCs的重要来源,而油品挥发、燃煤的输送与本地积累是其他(混合、夜间与反应)气团VOCs的重要来源.机动车排放、油品挥发与燃煤为VOCs与O3生成的重要贡献源,控制此类源排放可减少太原市城区环境VOCs浓度并有效降低O3生成.  相似文献   
542.
研究重稀土元素钇(Y(III))对短程反硝化工艺的短期和长期影响.结果表明,1~50mg/L的Y(III)对亚硝酸盐的积累量无明显影响,60~100mg/L的Y(III)会影响硝酸盐的还原和亚硝酸盐的积累.1~10mg/L的Y(III)对细菌活性呈现促进作用,20~100mg/L的Y(III)对细菌活性呈现抑制作用.胞外吸附的Y(III)是抑制细菌活性的主要因子,线性拟合的相关性系数R2为0.957,半抑制浓度IC50(吸附)为1.079mg/L(以湿重计),对应水中Y(III)浓度为54.35mg/L.SEM显示,添加Y(III)会使细菌产生更多的胞外聚合物(EPS)将细菌包裹以抵抗Y(III)的毒性,EDS显示被包裹的细菌表面碳、氮元素含量大幅度降低,EPS影响了底物的传质.130d的长期实验表明,5mg/L的Y(III)会使反应器的反硝化性能逐渐消失,停止添加稀土后,反应器的亚硝酸盐积累功能也不能恢复.  相似文献   
543.
Marine aquaculture in semi-enclosed bays can significantly influence nutrient cycling in coastal ecosystems. However, the impact of marine aquaculture on the dynamics of dissimilatory nitrate reduction processes (DNRPs) and the fate of reactive nitrogen remain poorly understood. In this study, the rates of DNRPs and the abundances of related functional genes were investigated in aquaculture and non-aquaculture areas. The results showed that marine aquaculture significantly increased the denitrification (DNF) and dissimilatory nitrate reduction to ammonium (DNRA) rates and decreased the rate of anaerobic ammonium oxidation (ANA), as compared with non-aquaculture sites. DNF was the dominant pathway contributing to the total nitrate reduction, and its contribution to the total nitrate reduction significantly increased from 66.72% at non-aquaculture sites to 78.50% at aquaculture sites. Marine aquaculture can significantly affect the physicochemical characteristics of sediment and the abundances of related functional genes, leading to variations in the nitrate reduction rates. Although nitrate removal rates increased in the marine aquaculture area, ammonification rates and the nitrogen retention index in the aquaculture areas were 2.19 and 1.24 times, respectively, higher than those at non-aquaculture sites. Net reactive nitrogen retention exceeded nitrogen removal in the aquaculture area, and the retained reactive nitrogen could diffuse with the tidal current to the entire bay, thereby aggravating N pollution in the entire study area. These results show that marine aquaculture is the dominant source of nitrogen pollution in semi-enclosed bays. This study can provide insights into nitrogen pollution control in semi-enclosed bays with well-developed marine aquaculture.  相似文献   
544.
To evaluate the effectiveness of emission control regulations designed for reducing air pollution, chemically resolved PM2.5 data have been collected across Canada through the National Air Pollution Surveillance network in the past decade. 24-hr time integrated PM2.5 collected at seven urban and two rural sites during 2010-2016 were analyzed to characterize geographical and seasonal patterns and associated potential causes. Site-specific seven-year mean gravimetric PM2.5 mass concentrations ranged from 5.7 to 9.6 µg/m3. Seven-year mean concentrations of SO42?, NO3?, NH4+, organic carbon (OC), and elemental carbon (EC) were in the range of 0.68 to 1.6, 0.21 to 1.5, 0.27 to 0.71, 1.1 to 1.9, and 0.37 to 0.71 µg /m3, accounting for 10.8%-18.1%, 3.7%-16.7%, 4.7%-7.4%, 18.4%-21.0%, and 6.4%-10.6%, respectively, of gravimetric PM2.5 mass. PM2.5 and its five major chemical components showed higher concentrations in southeastern Canada and lower values in Atlantic Canada, with the seven-year mean ratios between the two regions being on the order of 1.7 for PM2.5 and 1.8-7.1 for its chemical components. When comparing the concentrations between urban and rural sites within the same region, those of SO42? and NH4+ were comparable, while those of NO3?, OC, and EC were around 20%, 40%-50%, and 70%-80%, respectively, higher at urban than rural sites, indicating the regional scale impacts of SO42? and NH4+ and effects of local sources on OC and EC. Monthly variations generally showed summertime peaks for SO42? and wintertime peaks for NO3?, but those of NH4+, OC, and EC exhibited different seasonality at different locations.  相似文献   
545.
To investigate the air quality change during the COVID-19 pandemic, we analyzed spatiotemporal variations of six criteria pollutants in nine typical urban agglomerations in China using ground-based data and examined meteorological influences through correlation analysis and backward trajectory analysis under different responses. Concentrations of PM2.5, PM10, NO2, SO2 and CO in urban agglomerations respectively decreased by 18%–45% (30%–62%), 17%–53% (22%–39%), 47%-64% (14%–41%), 9%–34% (0%–53%) and 16%-52% (23%–56%) during Lockdown (Post-lockdown) period relative to Pre-lockdown period. PM2.5 pollution events occurred during Lockdown in Beijing-Tianjin-Hebe (BTH) and Middle and South Liaoning (MSL), and daily O3 concentration rose to grade Ⅱ standard in Post-lockdown period. Distinct from the nationwide slump of NO2 during Lockdown period, a rebound (~40%) in Post-lockdown period was observed in Cheng-Yu (CY), Yangtze River Middle-Reach (YRMR), Yangtze River Delta (YRD) and Pearl River Delta (PRD). With slightly higher wind speed compared with 2019, the reduction of PM2.5 (51%–62%) in Post-lockdown period is more than 2019 (15%–46%) in HC (Harbin-Changchun), MSL, BTH, CP (Central Plain) and SP (Shandong-Peninsula), suggesting lockdown measures are effective to PM2.5 alleviation. Although O3 concentrations generally increased during the lockdown, its increment rate declined compared with 2019 under similar sunlight duration and temperature. Additionally, unlike HC, MSL and BTH, which suffered from additional (> 30%) air masses from surrounding areas after the lockdown, the polluted air masses reaching YRD and PRD mostly originated from the long-distance transport, highlighting the importance of joint regional governance.  相似文献   
546.
The chemical characteristics, oxidative potential, and sources of PM2.5 were analyzed at the urban sites of Lahore and Peshawar, Pakistan in February 2019. Carbonaceous species, water soluble ions, and metal elements were measured to investigate the chemical composition and sources of PM2.5. The dithiothreitol (DTT) consumption rate was measured to evaluate the oxidative potential of PM2.5. Both cities showed a high exposure risk of PM2.5 regarding its oxidative potential (DTTv). Carbonaceous and some of the elemental species of PM2.5 correlated well with DTTv in both Lahore and Peshawar. Besides, the DTTv of PM2.5 in Lahore showed significant positive correlation with most of the measured water soluble ions, however, ions were DTT-inactive in Peshawar. Due to the higher proportions of carbonaceous species and metal elements, Peshawar showed higher mass-normalized DTT activity of PM2.5 compared to Lahore although the average PM2.5 concentration in Peshawar was lower. The high concentrations of toxic metals also posed serious non-carcinogenic and carcinogenic risks to the residents of both cities. Principle component analysis coupled with multiple linear regression was applied to investigate different source contributions to PM2.5 and its oxidative potential. Mixed sources of traffic and road dust resuspension and coal combustion, direct vehicle emission, and biomass burning and formation of secondary aerosol were identified as the major sources of PM2.5 in both cities. The findings of this study provide important data for evaluation of the potential health risks of PM2.5 and for formulation of efficient control strategies in major cities of Pakistan.  相似文献   
547.
Air pollution has a serious fallout on human health, and the influences of the different urban morphological characteristics on air pollutants cannot be ignored. In this study, the relationship between urban morphology and air quality (wind speed, CO, and PM2.5) in residential neighborhoods at the meso-microscale was investigated. The changes in the microclimate and pollutant diffusion distribution in the neighborhood under diverse weather conditions were simulated by Computational Fluid Dynamics (CFD). This study identified five key urban morphological parameters (Building Density, Average Building Height, Standard Deviation of Building Height, Mean Building Volume, and Degree of Enclosure) which significantly impacted the diffusion and distribution of pollutants in the neighborhood. The findings of this study suggested that three specific strategies (e.g. volume of a single building should be reduced, DE should be increased) and one comprehensive strategy (the width and height of the single building should be reduced while the number of single buildings should be increased) could be illustrated as an optimized approach of urban planning to relief the air pollution. The result of the combined effects could provide a reference for mitigating air pollution in sustainable urban environments.  相似文献   
548.
Nowadays, iron ions as a ubiquitous heavy metal pollutant are gradually concerned and the convenient and quick removal of excessive iron ions in groundwater has become a major challenge for the safety of drinking water. In this study, boron-doped biochar (B-BC) was successfully prepared at various preparation conditions with the addition of boric acid. The as-prepared material has a more developed pore structure and a larger specific surface area (up to 897.97 m²/g). A series of characterization results shows that boric acid effectively activates biochar, and boron atoms are successfully doped on biochar. Compared with the ratio of raw materials, the pyrolysis temperature has a greater influence on the amount of boron doping. Based on Langmuir model, the maximum adsorption capacity of 800B-BC1:2 at 25 °C, 40 °C, 55 °C are 50.02 mg/g, 95.09 mg/g, 132.78 mg/g, respectively. Pseudo-second-order kinetic model can better describe the adsorption process, the adsorption process is mainly chemical adsorption. Chemical complexation, ions exchange, and co-precipitation may be the main mechanisms for Fe2+ removal.  相似文献   
549.
In this work, Bi2XO6 (X = W, Mo) are synthesized at different temperatures. The results of tests find the optimal temperatures of Bi2WO6 and Bi2MoO6 are 180 and 160°C (BW-180, BM-160). Then, BW-180 and BM-160 are further compounded with different contents of CuS. The results of photoelectrochemical (PEC) tests show that CuS can improve the PEC performance of semiconductor materials, and it has better performance when CuS mass fraction is 5%. These maybe the photoelectron potentials generated by CuS/Bi2XO6 (X = Mo, W) heterojunction reduce the combination of photogenerated electrons and holes. When the PEC sensor based on 5%-CuS/BW-180 detects Cr(VI), it has a linear range of 1–80 μmol/L with detection limit of 0.95 μmol/L, while the PEC sensor based on 5%-CuS/BM-160 detects Cr(VI) has a linear range of 0.5–230 μmol/L and a detection limit of 0.12 μmol/L. Thus, 5%-CuS/Bi2XO6 has potential application in hexavalent chromium detection.  相似文献   
550.
以3种化学助剂的化学品安全技术说明书(SDS)信息与气相色谱-质谱联用仪定性分析结果为对比,探讨了油田化学助剂安全技术说明书在完整性、真实性、准确性等方面存在的问题,建议完善SDS审核与监督机制,在识别有害因素时根据SDS、定性定量检测结果、生产工艺及原辅材料分析等内容做出综合判断,使用化学助剂时核实SDS准确性及化学助剂安全性,以采取正确的防控措施。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号