Environmental Management of the stone cutting industry in Hebron is required to reduce the industry's adverse impact on the downstream agricultural land and the adverse impact on the drinking water aquifers. This situation requires the implementation of an industrial wastewater management strategic approach and technology, within the available technical and financial resources. Ten pilot projects at different locations were built at Hebron to reduce or eliminate the incompatible discharge of the liquid and solid waste to the environment and improve the stone cutting industry's effluent quality. A review of existing practices and jar test experiments were used to optimize the water recycling and treatment facilities. The factors reviewed included influent pumping rates and cycles, selection of the optimal coagulant type and addition methods, control of the sludge recycling process, control over flow rates, control locations of influent and effluent, and sludge depth. Based on the optimized doses and Turbidity results, it was determined that the use of Fokland polymer with an optimal dose of 1.5mg/L could achieve the target turbidity levels. The completion of the pilot projects resulted in the elimination of stone cutting waste discharges and an improvement in the recycled effluent quality of 44-99%. This in turn reduced the long term operating costs for each participating firm. A full-scale project that includes all the stone cutting firms in Hebron industrial area is required. 相似文献
The continuous discharge of diverse chemical products in the environment is nowadays of great concern to the whole world as some of them persist in the environment leading to serious diseases. Several sampling techniques have been used for the characterization of this chemical pollution, although biomonitoring using natural samplers has recently become the technique of choice in this field due to its efficiency, specificity, and low cost. In fact, several living organisms known as biomonitors could accumulate the well-known persistent environmental pollutants allowing their monitoring in the environment. In this work, a review on environmental biomonitoring is presented. The main sampling techniques used for monitoring environmental pollutants are first reported, followed by an overview on well-known natural species used as passive samplers and known as biomonitors. These species include conifer needles, lichen, mosses, bees and their byproducts, and snails, and were widely used in recent research as reliable monitors for environmental pollution.
Structural equation modeling is an advanced multivariate statistical process with which a researcher can construct theoretical concepts, test their measurement reliability, hypothesize and test a theory about their relationships, take into account measurement errors, and consider both direct and indirect effects of variables on one another. Latent variables are theoretical concepts that unite phenomena under a single term, e.g., ecosystem health, environmental condition, and pollution (Bollen, 1989). Latent variables are not measured directly but can be expressed in terms of one or more directly measurable variables called indicators. For some researchers, defining, constructing, and examining the validity of latent variables may be the end task of itself. For others, testing hypothesized relationships of latent variables may be of interest. We analyzed the correlation matrix of eleven environmental variables from the U.S. Environmental Protection Agency's (USEPA) Environmental Monitoring and Assessment Program for Estuaries (EMAP-E) using methods of structural equation modeling. We hypothesized and tested a conceptual model to characterize the interdependencies between four latent variables-sediment contamination, natural variability, biodiversity, and growth potential. In particular, we were interested in measuring the direct, indirect, and total effects of sediment contamination and natural variability on biodiversity and growth potential. The model fit the data well and accounted for 81% of the variability in biodiversity and 69% of the variability in growth potential. It revealed a positive total effect of natural variability on growth potential that otherwise would have been judged negative had we not considered indirect effects. That is, natural variability had a negative direct effect on growth potential of magnitude –0.3251 and a positive indirect effect mediated through biodiversity of magnitude 0.4509, yielding a net positive total effect of 0.1258. Natural variability had a positive direct effect on biodiversity of magnitude 0.5347 and a negative indirect effect mediated through growth potential of magnitude –0.1105 yielding a positive total effects of magnitude 0.4242. Sediment contamination had a negative direct effect on biodiversity of magnitude –0.1956 and a negative indirect effect on growth potential via biodiversity of magnitude –0.067. Biodiversity had a positive effect on growth potential of magnitude 0.8432, and growth potential had a positive effect on biodiversity of magnitude 0.3398. The correlation between biodiversity and growth potential was estimated at 0.7658 and that between sediment contamination and natural variability at –0.3769. 相似文献
Environmental Science and Pollution Research - In this study, the application of novel biocarrier Orchis mascula plant for immobilization of non-adapted mixed cells biodegrade reactive azo dyes in... 相似文献