首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15538篇
  免费   158篇
  国内免费   126篇
安全科学   374篇
废物处理   666篇
环保管理   1794篇
综合类   2540篇
基础理论   4308篇
环境理论   4篇
污染及防治   4025篇
评价与监测   1056篇
社会与环境   963篇
灾害及防治   92篇
  2022年   127篇
  2021年   104篇
  2020年   100篇
  2019年   106篇
  2018年   195篇
  2017年   233篇
  2016年   326篇
  2015年   266篇
  2014年   452篇
  2013年   1202篇
  2012年   491篇
  2011年   691篇
  2010年   613篇
  2009年   581篇
  2008年   671篇
  2007年   713篇
  2006年   589篇
  2005年   513篇
  2004年   521篇
  2003年   507篇
  2002年   489篇
  2001年   647篇
  2000年   475篇
  1999年   254篇
  1998年   173篇
  1997年   206篇
  1996年   205篇
  1995年   236篇
  1994年   234篇
  1993年   180篇
  1992年   195篇
  1991年   183篇
  1990年   203篇
  1989年   187篇
  1988年   151篇
  1987年   162篇
  1986年   153篇
  1985年   156篇
  1984年   148篇
  1983年   140篇
  1982年   125篇
  1981年   120篇
  1980年   115篇
  1979年   124篇
  1978年   100篇
  1977年   113篇
  1975年   87篇
  1974年   87篇
  1973年   96篇
  1972年   86篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
711.
A new bioassay proposed in the patent P201300029 was applied to a pre-treated wastewater containing a mixture of commercial pesticides to simulate a recalcitrant industrial wastewater in order to determine its biodegradability. The test uses a mixture of standardized inoculum of the lyophilized bacteria Pseudomonas putida with the proper proportion of salts and minerals. The results highlight that biodegradation efficiency can be calculated using a gross parameter (chemical oxygen demand (COD)) which facilitates the biodegradability determination for routine water biodegradability analysis. The same trend was observed throughout the assay with the dehydrated and fresh inoculums, and only a difference of 5 % in biodegradation efficiency (E f) was observed. The obtained results showed that the P. putida biodegradability assay can be used as a commercial test with a lyophilized inoculum in order to monitor the ready biodegradability of an organic pollutant or a WWTP influent. Moreover, a combination of the BOD5/COD ratio and the P. putida biodegradability test is an attractive alternative in order to evaluate the biodegradability enhancement in water pre-treated with advanced oxidation processes (AOPs).  相似文献   
712.
The fate of excess nitrogen in estuaries is determined by the microbial-driven nitrogen cycle, being denitrification a key process since it definitely removes fixed nitrogen as N2. However, estuaries receive and retain metals, which may negatively affect this process efficiency. In this study, we evaluated the role of salt marsh plants in mediating cadmium (Cd) impact on microbial denitrification process. Juncus maritimus and Phragmites australis from an estuary were collected together with the sediment involving their roots, each placed in vessels and maintained in a greenhouse, exposed to natural light, with tides simulation. Similar non-vegetated sediment vessels were prepared. After 3 weeks of accommodation, nine vessels (three per plant species plus three non-vegetated) were doped with 20 mg/L Cd2+ saline solution, nine vessels were doped with 2 mg/L Cd2+ saline solution and nine vessels were left undoped. After 10 weeks, vessels were dissembled and denitrification potential was measured in sediment slurries. Results revealed that the addition of Cd did not cause an effect on the denitrification process in non-vegetated sediment but had a clear stimulation in colonized ones (39 % for P. australis and 36 % for J. maritimus). In addition, this increase on denitrification rates was followed by a decrease on N2O emissions and on N2O/N2 ratios in both J. maritimus and P. australis sediments, increasing the efficiency of the N2O step of denitrification pathway. Therefore, our results suggested that the presence of salt marsh plants functioned as key mediators on the degree of Cd impact on microbial denitrification.  相似文献   
713.
Environmental toxicants viz lead or cadmium and phthalate esters (di(2-ethylhexyl) phthalate [DEHP], dibutyl phthalate [DBP], and diethyl phthalate [DEP]) widely found in different environmental strata are linked to deteriorating male reproductive health. The objective was to assess the relationships between the seminal lead, cadmium, and phthalate (DEHP, DBP, DEP) concentrations at environmental level and serum hormone levels and semen quality in non-occupationally exposed men and specify the effect of individual and combined exposure of toxicants on semen quality. A study of 60 male partners of couples attending the Andrology Laboratory of the Reproductive Biology Department, All India Institute of Medical Sciences (AIIMS), New Delhi, India for semen analysis to assess their inability to achieve a pregnancy was selected for the study. The results of univariate and stepwise multiple regression analysis in the unadjusted model showed a significant correlation between lead or cadmium and phthalates DEHP/DBP/DEP and sperm motility, sperm concentration, and DNA damage. After adjusting for potential confounders, an association with lead or DEHP was only observed. The present data shows that lead (Pb) or cadmium (Cd) or phthalates might independently contribute to decline in semen quality and induce DNA damage. Phthalates might influence reproductive hormone testosterone. These findings are significant in light of the fact that men are exposed to a volley of chemicals; however, due to the small sample size, our finding needs to be confirmed in a larger population.  相似文献   
714.
Lysinibacillus sp. RGS degrades sulfonated azo dye Reactive Orange 16 (RO16) efficiently. Superoxide dismutase and catalase activity were tested to study the response of Lysinibacillus sp. RGS to the oxidative stress generated by RO16. The results demonstrated that oxidative stress enzymes not only protect the cell from oxidative stress but also has a probable role in decolorization along with an involvement of oxidoreductive enzymes. Formation of three different metabolites after degradation of RO16 has been confirmed by GC-MS analysis. FTIR analysis verified the degradation of functional groups of RO16, and HPTLC confirmed the removal of auxochrome group from the RO16 after degradation. Toxicity studies confirmed the genotoxic, cytotoxic, and phytotoxic nature of RO16 and the formation of less toxic products after the treatment of Lysinibacillus sp. RGS. Therefore, Lysinibacillus sp. RGS has a better perspective of bioremediation for textile wastewater treatment.  相似文献   
715.
Pharmaceuticals are commonly found both in the aquatic and the agricultural environments as a consequence of the human activities and associated discharge of wastewater effluents to the environment. The utilization of treated effluent for crop irrigation, along with land application of manure and biosolids, accelerates the introduction of these compounds into arable lands and crops. Despite the low concentrations of pharmaceuticals usually found, the continuous introduction into the environment from different pathways makes them ‘pseudo-persistent’. Several reviews have been published regarding the potential impact of veterinary and human pharmaceuticals on arable land. However, plant uptake as well as phytotoxicity data are scarcely studied. Simultaneously, phytoremediation as a tool for pharmaceutical removal from soils, sediments and water is starting to be researched, with promising results. This review gives an in-depth overview of the phytotoxicity of pharmaceuticals, their uptake and their removal by plants. The aim of the current work was to map the present knowledge concerning pharmaceutical interactions with plants in terms of uptake and the use of plant-based systems for phytoremediation purposes.  相似文献   
716.
This study evaluated the toxicity of herbicide atrazine, along with its bioaccumulation and biodegradation in the green microalga Chlamydomonas mexicana. At low concentration (10 μg L?1), atrazine had no profound effect on the microalga, while higher concentrations (25, 50, and 100 μg L?1) imposed toxicity, leading to inhibition of cell growth and chlorophyll a accumulation by 22 %, 33 %, and 36 %, and 13 %, 24 %, and 27 %, respectively. Atrazine 96-h EC50 for C. mexicana was estimated to be 33 μg L?1. Microalga showed a capability to accumulate atrazine in the cell and to biodegrade the cell-accumulated atrazine resulting in 14–36 % atrazine degradation at 10–100 μg L?1. Increasing atrazine concentration decreased the total fatty acids (from 102 to 75 mg g?1) and increased the unsaturated fatty acid content in the microalga. Carbohydrate content increased gradually with the increase in atrazine concentration up to 15 %. This study shows that C. mexicana has the capability to degrade atrazine and can be employed for the remediation of atrazine-contaminated streams.  相似文献   
717.
In the South of Italy, it is common for farmers to burn pruning waste from olive trees in spring. In order to evaluate the impact of the biomass burning source on the physical and chemical characteristics of the particulate matter (PM) emitted by these fires, a PM monitoring campaign was carried out in an olive grove. Daily PM10 samples were collected for 1 week, when there were no open fires, and when biomass was being burned, and at two different distances from the fires. Moreover, an optical particle counter and a polycyclic aromatic hydrocarbon (PAH) analyzer were used to measure the high time-resolved dimensional distribution of particles emitted and total PAHs concentrations, respectively. Chemical analysis of PM10 samples identified organic and inorganic components such as PAHs, ions, elements, and carbonaceous fractions (OC, EC). Analysis of the collected data showed the usefulness of organic and inorganic tracer species and of PAH diagnostic ratios for interpreting the impact of biomass fires on PM levels and on its chemical composition. Finally, high time-resolved monitoring of particle numbers and PAH concentrations was performed before, during, and after biomass burning, and these concentrations were seen to be very dependent on factors such as weather conditions, combustion efficiency, and temperature (smoldering versus flaming conditions), and moisture content of the wood burned.  相似文献   
718.
In order to assess indoor air quality (IAQ), two 1-week monitoring campaigns of volatile organic compounds (VOC) were performed in different areas of a multistorey shopping mall. High-spatial-resolution monitoring was conducted at 32 indoor sites located in two storehouses and in different departments of a supermarket. At the same time, VOC concentrations were monitored in the mall and parking lot area as well as outdoors. VOC were sampled at 48-h periods using diffusive samplers suitable for thermal desorption. The samples were then analyzed with gas chromatography–mass spectrometry (GC–MS). The data analysis and chromatic maps indicated that the two storehouses had the highest VOC concentrations consisting principally of terpenes. These higher TVOC concentrations could be a result of the low efficiency of the air exchange and intake systems, as well as the large quantity of articles stored in these small spaces. Instead, inside the supermarket, the food department was the most critical area for VOC concentrations. To identify potential emission sources in this department, a continuous VOC analyzer was used. The findings indicated that the highest total VOC concentrations were present during cleaning activities and that these activities were carried out frequently in the food department. The study highlights the importance of conducting both high-spatial-resolution monitoring and high-temporal-resolution monitoring. The former was able to identify critical issues in environments with a complex emission scenario while the latter was useful in interpreting the dynamics of each emission source.  相似文献   
719.
Atrazine is a persistent organic pollutant in the environment which affects not only terrestrial and aquatic biota but also human health. Since its removal from the environment is needed, atrazine biodegradation is achieved in the present study using the bacterium Rhodococcus sp. BCH2 isolated from soil, long-term treated with atrazine. The bacterium was capable of degrading about 75 % atrazine in liquid medium having pH 7 under aerobic and dark condition within 7 days. The degradation ability of the bacterium at various temperatures (20–60 °C), pH (range 3–11), carbon (glucose, fructose, sucrose, starch, lactose, and maltose), and nitrogen (ammonium molybdate, sodium nitrate, potassium nitrate, and urea) sources were studied for triumph optimum atrazine degradation. The results indicate that atrazine degradation at higher concentrations (100 ppm) was pH and temperature dependent. However, glucose and potassium nitrate were optimum carbon and nitrogen source, respectively. Atrazine biodegradation analysis was carried out by using high-performance thin-layer chromatography (HPTLC), Fourier transform infrared spectroscopy (FTIR), and liquid chromatography quadrupole time-of-flight (LC/Q-TOF-MS) techniques. LC/Q-TOF-MS analysis revealed formation of various intermediate metabolites including hydroxyatrazine, N-isopropylammelide, deisopropylhydroxyatrazine, deethylatrazine, deisopropylatrazine, and deisopropyldeethylatrazine which was helpful to propose biochemical degradation pathway of atrazine. Furthermore, the toxicological studies of atrazine and its biodegraded metabolites were executed on earthworm Eisenia foetida as a model organism with respect to enzymatic (SOD and Catalase) antioxidant defense mechanism and lipid peroxidation studies. These results suggest innocuous degradation of atrazine by Rhodococcus sp. BCH2 in nontoxic form. Therefore the Rhodococcus sp.BCH2 could prove a valuable source for the eco-friendly biodegradation of atrazine pesticide.  相似文献   
720.
Recycled waste wood is being increasingly used for energy production; however, organic and metal contaminants in by-products produced from the combustion/pyrolysis residue may pose a significant environmental risk if they are disposed of to land. Here we conducted a study to evaluate if highly polluted biochar (from pyrolysis) and ash (from incineration) derived from Cu-based preservative-treated wood led to different metal (e.g., Cu, As, Ni, Cd, Pb, and Zn) bioavailability and accumulation in sunflower (Helianthus annuus L.). In a pot experiment, biochar at a common rate of 2 % w/w, corresponding to ~50 t ha?1, and an equivalent pre-combustion dose of wood ash (0.2 % w/w) were added to a Eutric Cambisol (pH 6.02) and a Haplic Podzol (pH 4.95), respectively. Both amendments initially raised soil pH, although this effect was relatively short-term, with pH returning close to the unamended control within about 7 weeks. The addition of both amendments resulted in an exceedance of soil Cu statutory limit, together with a significant increase of Cu and plant nutrient (e.g., K) bioavailability. The metal-sorbing capacity of the biochar, and the temporary increase in soil pH caused by adding the ash and biochar were insufficient to offset the amount of free metal released into solution. Sunflower plants were negatively affected by the addition of metal-treated wood-derived biochar and led to elevated concentration of metals in plant tissue, and reduced above- and below-ground biomass, while sunflower did not grow at all in the Haplic Podzol. Biochar and ash derived from wood treated with Cu-based preservatives can lead to extremely high Cu concentrations in soil and negatively affect plant growth. Identifying sources of contaminated wood in waste stream feedstocks is crucial before large-scale application of biochar or wood ash to soil is considered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号