首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2056篇
  免费   28篇
  国内免费   28篇
安全科学   54篇
废物处理   75篇
环保管理   279篇
综合类   473篇
基础理论   398篇
环境理论   1篇
污染及防治   588篇
评价与监测   108篇
社会与环境   117篇
灾害及防治   19篇
  2023年   21篇
  2022年   30篇
  2021年   48篇
  2020年   31篇
  2019年   34篇
  2018年   65篇
  2017年   60篇
  2016年   78篇
  2015年   79篇
  2014年   88篇
  2013年   103篇
  2012年   93篇
  2011年   136篇
  2010年   110篇
  2009年   116篇
  2008年   102篇
  2007年   107篇
  2006年   91篇
  2005年   59篇
  2004年   84篇
  2003年   53篇
  2002年   70篇
  2001年   72篇
  2000年   34篇
  1999年   17篇
  1998年   18篇
  1997年   26篇
  1996年   19篇
  1995年   31篇
  1994年   23篇
  1993年   7篇
  1992年   15篇
  1991年   24篇
  1990年   13篇
  1989年   18篇
  1988年   7篇
  1987年   4篇
  1985年   5篇
  1984年   6篇
  1983年   4篇
  1982年   10篇
  1981年   12篇
  1979年   10篇
  1970年   6篇
  1969年   4篇
  1965年   4篇
  1962年   3篇
  1960年   4篇
  1959年   3篇
  1954年   3篇
排序方式: 共有2112条查询结果,搜索用时 15 毫秒
811.
812.
For the protection of early and summer cauliflower and brussels sprouts crops against root fly, the insecticide chlorpyrifos was applied at planting onto soil around the stem of the plant, or in the planting line. In the soil, chlorpyrifos (1) was transformed into the insecticide metabolites oxon, 0,0‐diethyl‐0‐(3,5,6‐tri‐chloro‐2‐pyridinyl) phosphate (2), and 3,5,6‐trichloro‐2‐pyridinol (3). The soil half life time of chlorpyrifos could be 2.8 times greater (42 days relative to 15 days) when the field history as to cauliflower monoculture and insecticide treatments was short (1 year), than when it was long (8 years). Rains and season also had cumulative effects on the chlorpyrifos soil half life times. In the leaves of cabbage, chlorpyrifos and compound 3 were observed at concentrations which were higher, especially when their soil concentrations were high. Chlorpyrifos and compounds 2 and 3 however were not detected in the “flower” of cauliflower, nor in the brussels sprouts itself, the limit of sensitivity being 0.02 ppm of fresh weight.  相似文献   
813.
The purposes of this paper are: (a) to describe a framework designed for multi-scale sustainability evaluation of Natural Resource Management Systems (NRMS), and (b) to illustrate its application for quantitative analysis using linear programming. The framework described here is intended to contribute to the operationalisation of the concept of sustainability by supporting the processes of design, evaluation and implementation of alternative NRMS at different scales. In this paper, Linear Programming is used for the quantitative analysis of indicators and their trade-offs; using a schematised example, the basic characteristics of the Multi-scale Multiple Goal Linear Programming (M-MGLP) method are described. In M-MGLP, indicators pertaining to different scales of analysis can be set as objectives or constraints for the optimisation. In this way, stakeholders interacting in a specific region can be made aware of the consequences of alternative NRMS in terms of the different indicators at the same scale and/or for indicators at other scales of analysis. The paper ends with a discussion of the main strengths and limitations of the framework and, specifically, of linear programming.  相似文献   
814.
In the absence of a CO2 tax, the anticipation of a cheaper renewable backstop increases current emissions of CO2. Since the date at which renewables are phased in is brought forward and more generally future emissions of CO2 will decrease, the effect on global warming is unclear. Green welfare falls if the backstop is relatively expensive and full exhaustion of fossil fuels is optimal, but may increase if the backstop is sufficiently cheap relative to the cost of extracting the last drop of fossil fuels plus marginal global warming damages as then it is attractive to leave more fossil fuels unexploited and thus limit CO2 emissions. We establish these results by analyzing depletion of non-renewable fossil fuels followed by a switch to a clean renewable backstop, paying attention to timing of the switch and the amount of fossil fuels remaining unexploited. We also discuss the potential for limit pricing when the non-renewable resource is owned by a monopolist. Finally, we show that if backstops are already used and more backstops become economically viable as the price of fossil fuels rises, a lower cost of the backstop will either postpone fossil fuel exhaustion or leave more fossil fuel in situ, thus boosting green welfare. However, if a market economy does not internalize global warming externalities and renewables have not kicked in yet, full exhaustion of fossil fuel will occur in finite time and a backstop subsidy always curbs green welfare.  相似文献   
815.
The thermal bar—a hydrodynamic phenomenon, arising in natural basins due to successive changes of the water temperature across the temperature of maximum density (Tm, which is close to 4°C)—has been studied in laboratory experiments and by numerical simulations. The experiments were performed in a rectangular tank with an inclined bottom, filled with water with initial temperature T0 < Tm and then heated at the surface. During the heating a basin-wide circulation develops, consisting of down-slope cascades in regions where T < Tm, a subsurface off-shore jet in the region where T > Tm, and a compensating flow at intermediate depths towards the shallow part of the tank, supplying both off-shore flows with waters from deeper regions. Analysis of the water temperature and density fields as well as the currents has revealed that the location of the convergence zone of the surface current (when formed) does not coincide with that of the Tm-isotherm. The thermal bar front is typically understood as a convergence zone near the 4°C-isotherm, formed due to the effect of cabbeling. Our experiments demonstrate, however, that the front is associated with the leading edge of the subsurface current. The increasing distance between the 4°C-isotherm and the subsurface jet has been recorded in the laboratory experiments. Numerical simulation results corroborate the laboratory experiments. A scaling analysis predicts the speed of propagation of this frontal zone to be U ~ [g × Δρ/ρ × H]1/2, where H is the depth (increasing with time) of the upper thermo-active layer, ρ0 a reference density, and Δρ is the characteristic horizontal density difference across the front. A combined analysis of laboratory, field and numerical data has corroborated this law.  相似文献   
816.
This study analyzed the isotopic profiles of four aragonitic shells of Scrobicularia plana in conjunction with measured seawater temperatures and salinities. Comparison of δ18OSHELL with expected values revealed fractionation of δ18O in near equilibrium with the ambient environment. Growth cessation occurred between November and March. Carbonate deposition stopped when temperatures were <12°C. Analysis of δ13CSHELL values suggested that carbon in the shell does not reflect the DIC in ambient water, likely due to the incorporation of metabolic carbon. An ontogenetic trend of increasing δ13C values over time was observed, likely related to changes in metabolic activity. Annual growth patterns were inferred from δ18OSHELL profiles and compared with internal and external growth lines. Estimations of age based on external lines were unreliable, resulting in overestimation of age and underestimation of growth rates, likely due to the disturbance lines being wrongly identified as annual. Analysis of internal lines may lead to over- or underestimation of age and was more reliable in recent portions of the shell.  相似文献   
817.
Contamination caused by pesticides in agriculture is a source of environmental poor water quality in some of the European Union countries. Without treatment or targeted mitigation, this pollution is diffused in the environment. Pesticides and some metabolites are of increasing concern because of their potential impacts on the environment, wildlife and human health. Within the context of the European Union (EU) water framework directive context to promote low pesticide-input farming and best management practices, the EU LIFE project ArtWET assessed the efficiency of ecological bioengineering methods using different artificial wetland (AW) prototypes throughout Europe. We optimized physical and biological processes to mitigate agricultural nonpoint-source pesticide pollution in artificial wetland ecosystems. Mitigation solutions were implemented at full-scale demonstration and experimental sites. We tested various bioremediation methods at seven experimental sites. These sites involved (1) experimental prototypes, such as vegetated ditches, a forest microcosm and 12 wetland mesocosms, and (2) demonstration prototypes: vegetated ditches, three detention ponds enhanced with technology of constructed wetlands, an outdoor bioreactor and a biomassbed. This set up provides a variety of hydrologic conditions, with some systems permanently flooded and others temporarily flooded. It also allowed to study the processes both in field and controlled conditions. In order to compare the efficiency of the wetlands, mass balances at the inlet and outlet of the artificial wetland will be used, taking into account the partition of the studied compound in water, sediments, plants, and suspended solids. The literature background necessary to harmonize the interdisciplinary work is reviewed here and the theoretical framework regarding pesticide removal mechanisms in artificial wetland is discussed. The development and the implementation of innovative approaches concerning various water quality sampling strategies for pesticide load estimates during flood, specific biological endpoints, innovative bioprocess applied to herbicide and copper mitigation to enhance the pesticide retention time within the artificial wetland, fate and transport using a 2D mixed hybrid finite element model are introduced. These future results will be useful to optimize hydraulic functioning, e.g., pesticide resident time, and biogeochemical conditions, e.g., dissipation, inside the artificial wetlands. Hydraulic retention times are generally too low to allow an optimized adsorption on sediment and organic materials accumulated in artificial wetlands. Absorption by plants is not either effective. The control of the hydraulic design and the use of adsorbing materials can be useful to increase the pesticides residence time and the contact between pesticides and biocatalyzers. Pesticide fluxes can be reduced by 50–80% when hydraulic pathways in artificial wetlands are optimized by increasing ten times the retention time, by recirculation of water, and by deceleration of the flow. Thus, using a bioremediation method should lead to an almost complete disappearance of pesticides pollution. To retain and treat the agricultural nonpoint-source po a major stake for a sustainable development.  相似文献   
818.
Fundamentals of nonlinear wave-particle interactions are studied experimentally in a Hele-Shaw configuration with wave breaking and a dynamic bed. To design this configuration, we determine, mathematically, the gap width which allows inertial flows to survive the viscous damping due to the side walls. Damped wave sloshing experiments compared with simulations confirm that width-averaged potential-flow models with linear momentum damping are adequately capturing the large scale nonlinear wave motion. Subsequently, we show that the four types of wave breaking observed at real-world beaches also emerge on Hele-Shaw laboratory beaches, albeit in idealized forms. Finally, an experimental parameter study is undertaken to quantify the formation of quasi-steady beach morphologies due to nonlinear, breaking waves: berm or dune, beach and bar formation are all classified. Our research reveals that the Hele-Shaw beach configuration allows a wealth of experimental and modelling extensions, including benchmarking of forecast models used in the coastal engineering practice, especially for shingle beaches.  相似文献   
819.
Organochlorine pesticides (OCPs) are pesticides with global scale ubiquity, persistence and bioaccumulation, which leave long-term residuals in the water body. OCPs’ high toxicity poses significant threats to human health and aquatic biodiversity, making assessment of OCPs’ impact on aquatic ecology and human health urgently necessary. In this research, the presence of 16 OCPs in surface water and groundwater along Shaying River, China, as well as OCPs concentration correlations, was investigated at 24 selected sampling sites. At the same time, the ecological risk and human carcinogenic risk were also analyzed by risk quotient method and USEPA’s Risk Assessment Guidance, respectively. Results showed that the total concentration of OCPs ranged from 21.0 to 61.4 ng L?1 in groundwater, and 12.3–77.5 ng L?1 in surface water. Hexachlorocyclohexane (HCHs) and heptachlor were the prominent contaminants in groundwater, which indicated their use in the recent past and confirmed their persistence. The α-HCH/γ-HCH ratios in groundwater confirmed that γ-HCH (lindane) was used as main substitute of technical HCH in the study area. The correlation analysis illustrated that δ-HCH and γ-HCH played a dominant role in HCHs residue. Heptachlor and α-HCH, as well as endosulfan and heptachlor epoxide, had a strongly significant positive correlation, suggesting an associated usage of the two pair OCPs. An extremely high ecological risk for aquatic organism was observed for γ-HCH, heptachlor and dieldrin, while the carcinogenic risks posed by the selected OCPs in surface water and groundwater were all acceptable.  相似文献   
820.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号