首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1790篇
  免费   17篇
  国内免费   23篇
安全科学   46篇
废物处理   62篇
环保管理   244篇
综合类   401篇
基础理论   346篇
环境理论   1篇
污染及防治   512篇
评价与监测   95篇
社会与环境   109篇
灾害及防治   14篇
  2023年   18篇
  2022年   18篇
  2021年   29篇
  2020年   21篇
  2019年   25篇
  2018年   47篇
  2017年   50篇
  2016年   60篇
  2015年   72篇
  2014年   76篇
  2013年   84篇
  2012年   80篇
  2011年   115篇
  2010年   97篇
  2009年   99篇
  2008年   90篇
  2007年   98篇
  2006年   80篇
  2005年   54篇
  2004年   80篇
  2003年   44篇
  2002年   64篇
  2001年   67篇
  2000年   30篇
  1999年   17篇
  1998年   17篇
  1997年   25篇
  1996年   19篇
  1995年   31篇
  1994年   19篇
  1993年   6篇
  1992年   14篇
  1991年   24篇
  1990年   11篇
  1989年   18篇
  1988年   7篇
  1987年   4篇
  1985年   5篇
  1984年   5篇
  1982年   10篇
  1981年   10篇
  1979年   9篇
  1970年   6篇
  1969年   4篇
  1966年   3篇
  1965年   4篇
  1962年   3篇
  1960年   4篇
  1959年   3篇
  1954年   3篇
排序方式: 共有1830条查询结果,搜索用时 546 毫秒
441.
442.
Summary In a group of captive chimpanzees (Pan troglodytes), we studied whether females received more social benefits from males when they were in oestrus than at other times and whether males distributed their beneficial acts especially to females with whom they mated more frequently. When in oestrus, females were groomed more frequently by males than at other times. There was an indication that females were groomed especially by those males with whom they mated more often. From the male point of view, the relationship between active grooming and copulation frequency held only in interactions with oestrous females. No difference was found in the male's tendency to share food with females in oestrous or anoestrous condition. Further, clear disadvantages were associated with being in oestrus: females received support from males less frequently and were more often involved in conflicts with males than in their anoestrous period. Higher ranking males did not mate more often. No relationship was found between the frequency with which a male copulated with a given female and her dominance rank, age or parity, nor did he support her or share food more often with her.  相似文献   
443.
444.
Bay  L. K.  Choat  J. H.  van Herwerden  L.  Robertson  D. R. 《Marine Biology》2004,144(4):757-767
Historical sea level fluctuations have influenced the genetic structure and evolutionary history of marine species and examining widespread species across their species ranges may elucidate some of these effects. Chlorurus sordidus is a common and widespread parrotfish found on coral reefs throughout the Indo-central Pacific. We used phylogenetic, phylogeographic, and cladistic analyses to examine the genetic composition and population structure of this species across most of its latitudinal range limits. We sequenced 354 bp of the mitochondrial control region I in 185 individuals from nine populations. Populations of C. sordidus displayed high levels of genetic diversity, similar to those recorded for widespread pelagic fish species, but much greater nucleotide diversity values than those previously recorded for other demersal reef fishes. Both phylogenetic and phylogeographic analyses detected strong genetic subdivision at the largest spatial scale (i.e. among oceans). The Pacific Ocean was characterised by weak population genetic structure. Separation of the Hawaiian location from other Pacific and West Indian Ocean sites was evident in phylogenetic analyses, but not from analysis of molecular variance. NCA and isolation-by-distance tests suggested that the genetic structure of this species was the result of multiple contemporary and historical processes, including long-distance colonisation and range expansion arising from fluctuating sea levels, limited current gene flow, and isolation by distance. This pattern is to be expected when historically fragmented populations come into secondary contact. We suggest the patterns of population genetic structure recorded in C. sordidus are caused by large local population sizes, high gene flow, and a recent history of repeated fragmentation and remixing of populations resulting from fluctuating sea levels.Communicated by M.S. Johnson, Crawley  相似文献   
445.
Mitochondrial control region (HVR-1) sequences were used to identify patterns of genetic structure and diversity in Naso vlamingii, a widespread coral reef fish with a long evolutionary history. We examined 113 individuals from eight locations across the Indo-Pacific Ocean. Our aims were to determine the spatial scale at which population partitioning occurred and then to evaluate the extent to which either vicariance and/or dispersal events have shaped the population structure of N. vlamingii. The analysis produced several unexpected findings. Firstly, the genetic structure of this species was temporal rather than spatial. Secondly, there was no evidence of a barrier to dispersal throughout the vast distribution range. Apparently larvae of this species traverse vicariance barriers that inhibit inter-oceanic migration of other widespread reef fish taxa. Thirdly, an unusual life history and long evolutionary history was associated with a population structure that was unique amongst coral reef fishes in terms of the magnitude and pattern of genetic diversity (haplotype diversity, h = 1.0 and nucleotide diversity π = 13.6%). In addition to these unique characteristics, there was no evidence of isolation by distance (r = 0.458, R 2 = 0.210, P = 0.078) as has also been shown for some other widespread reef species. However, some reductions in gene flow were observed among and within Ocean basins [Indian–Pacific analysis of molecular variance (AMOVA), Φ st = 0.0766, P < 0.05; West Indian–East Indian–Pacific AMOVA Φ st = 0.079, P < 0.05]. These findings are contrasted with recent studies of coral reef fishes that imply a greater degree of spatial structuring in coral reef fish populations than would be expected from the dispersive nature of their life cycles. We conclude that increased taxon sampling of coral reef fishes for phylogeographic analysis will provide an extended view of the ecological and evolutionary processes shaping coral reef fish diversity at both ends of the life history spectrum.  相似文献   
446.
Summary. Many secondary plant compounds are involved in defense against both insect herbivores and pathogens. Two secondary plant compounds of Plantago lanceolata, the iridoid glycosides catalpol and its precursor aucubin, are well known for their deterrent effects on generalist and non-adapted specialist insect herbivores. We tested the effects of these compounds on the in-vitro growth of a specialist and generalist fungal pathogen of this host species. Two chemical forms of these iridoids were tested. The glycosides and their aglycones, the products of enzymatic conversion by specific $/Beta$-glucosidase enzymes. The glycosides enhanced growth of both the specialist fungus Diaporthe adunca and the generalist fungus Fusarium moniliforme var. subglutinans. The positive effect of these glycosides on the generalist fungus is in sharp contrast with the generally negative effects of these glysosides on generalist insect herbivores. The aglycones of aucubin and catalpol reduced the growth of the specialist fungus D. adunca, but, contrary to expectation, enhanced the growth of the generalist fungus F. moniliforme var. subglutinans. Effects of aucubin on D. adunca were stronger than effects of catalpol. This was true both for the growth stimulating effects of the glycosides and for the fungitoxic effects of the aglycones. We therefore expect that the effects of these iridoids in P. lanceolata on the specialist fungus will strongly depend on the ratio between catalpol and its precursor aucubin and the chemical form (glycoside or aglycone) in which these compounds are encountered by the fungus during growth. Our results suggest that iridoid glycosides in P. lanceolata can be used as defense against both herbivores and pathogens, but that their effects are highly specific with respect to the natural enemy species that is encountered. Received 11 April 2002; accepted 9 August 2002  相似文献   
447.
Perhaps the most common form of cooperation among primates is the formation of coalitions. Competition among males within a group concerns a constant quantity of the limiting resource (fertilizations). Contest competition over fertilizations is known to produce payoffs that are distributed according to the priority-of-access model, and hence show an exponential decline in payoff with rank. We develop a model for rank-changing, within-group coalitions among primate males. For these coalitions to occur, they must be both profitable (i.e. improve fitness) for all coalition members and feasible (i.e. be able to beat the targets). We assume that the value of the coalition is the sum of the payoffs of the partners in their original ranks. We distinguish three basic coalition configurations, depending on the dominance ranks of the coalition partners relative to their target. We predict five basic coalition types. First, all-up, rank-changing coalitions targeting individuals ranking above all coalition partners; these are expected to involve coalition partners ranking just below their target, concern top rank, and be small, just two or three animals. Second, bridging, rank-changing coalitions, where higher-rankers support lower-rankers to rise to a rank below themselves; these are expected to be most common where a high-ranking male in a despotic system can support a low-ranking relative. Third, bridging non-rank-changing coalitions; these are expected to be common whenever high-ranking males have low-ranking close relatives. Fourth, non-rank-changing coalitions by high-rankers against lower-ranking targets; these are expected to serve to counteract or prevent the first type. Fifth, non-rank-changing, leveling coalitions, in which all partners rank below their target and which flatten the payoff distribution; these are expected to be large and mainly involve lower-ranking males. Bridging, rank-changing coalitions are expected in situations where contest is strong, all-up rank-changing coalitions where contest is intermediate, and leveling coalitions where contest is weak. We review the empirical patterns found among primates. The strong predictions of the model are confirmed by observational data on male-male coalitions in primates.
Carel P. van SchaikEmail:
  相似文献   
448.
Caribbean seagrass beds are important feeding habitats for so-called nocturnally active zoobenthivorous fish, but the extent to which these fishes use mangroves and seagrass beds as feeding habitats during daytime remains unclear. We hypothesised three feeding strategies: (1) fishes feed opportunistically in mangroves or seagrass beds throughout the day and feed predominantly in seagrass beds during night-time; (2) fishes start feeding in mangroves or seagrass beds during daytime just prior to nocturnal feeding in seagrass beds; (3) after nocturnal feeding in seagrass beds, fishes complete feeding in mangroves or seagrass beds during the morning. We studied the effect of habitat type, fish size, social mode and time of day on resting and feeding behaviour of large juvenile (5–10 cm) and sub-adult (10–15 cm) Haemulon flavolineatum in mangroves and seagrass beds during daytime. Sub-adults occurred in mangroves only, spent most time on resting, and showed rare opportunistic feeding events (concordant with strategy 1), regardless of their social mode (solitary or schooling). In contrast, large juveniles were present in both habitat types and solitary fishes mainly foraged, while schooling fishes mainly rested. Exceptions were small juveniles (±5 cm) in seagrass beds which foraged intensively while schooling. Large juveniles showed more feeding activity in seagrass beds than in mangroves. In both habitat types, they showed benthic feeding, whereas pelagic feeding was observed almost exclusively in the seagrass beds. In both habitat types, their feeding activity was highest during 8:00–10:30 hours (concordant with strategy 3), and for seagrass fishes, it was also high during 17:30–18:30 hours (concordant with strategy 2). The study shows that both mangroves and seagrass beds provide daytime feeding habitats for some life-stages of H. flavolineatum, which is generally considered a nocturnal feeder.  相似文献   
449.
The evolution of female social relationships in nonhuman primates   总被引:38,自引:14,他引:38  
Considerable interspecific variation in female social relationships occurs in gregarious primates, particularly with regard to agonism and cooperation between females and to the quality of female relationships with males. This variation exists alongside variation in female philopatry and dispersal. Socioecological theories have tried to explain variation in female-female social relationships from an evolutionary perspective focused on ecological factors, notably predation and food distribution. According to the current “ecological model”, predation risk forces females of most diurnal primate species to live in groups; the strength of the contest component of competition for resources within and between groups then largely determines social relationships between females. Social relationships among gregarious females are here characterized as Dispersal-Egalitarian, Resident-Nepotistic, Resident-Nepotistic-Tolerant, or Resident-Egalitarian. This ecological model has successfully explained differences in the occurrence of formal submission signals, decided dominance relationships, coalitions and female philopatry. Group size and female rank generally affect female reproduction success as the model predicts, and studies of closely related species in different ecological circumstances underscore the importance of the model. Some cases, however, can only be explained when we extend the model to incorporate the effects of infanticide risk and habitat saturation. We review evidence in support of the ecological model and test the power of alternative models that invoke between-group competition, forced female philopatry, demographic female recruitment, male interventions into female aggression, and male harassment. Not one of these models can replace the ecological model, which already encompasses the between-group competition. Currently the best model, which explains several phenomena that the ecological model does not, is a “socioecological model” based on the combined importance of ecological factors, habitat saturation and infanticide avoidance. We note some points of similarity and divergence with other mammalian taxa; these remain to be explored in detail. Received: 30 September 1996 / Accepted after revision: 20 July 1997  相似文献   
450.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号