首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34286篇
  免费   469篇
  国内免费   454篇
安全科学   1069篇
废物处理   1332篇
环保管理   4579篇
综合类   6947篇
基础理论   8620篇
环境理论   22篇
污染及防治   8550篇
评价与监测   1961篇
社会与环境   1897篇
灾害及防治   232篇
  2022年   282篇
  2021年   280篇
  2020年   283篇
  2019年   283篇
  2018年   505篇
  2017年   539篇
  2016年   750篇
  2015年   620篇
  2014年   829篇
  2013年   2682篇
  2012年   1081篇
  2011年   1542篇
  2010年   1186篇
  2009年   1324篇
  2008年   1504篇
  2007年   1553篇
  2006年   1344篇
  2005年   1121篇
  2004年   1097篇
  2003年   1056篇
  2002年   996篇
  2001年   1152篇
  2000年   893篇
  1999年   571篇
  1998年   428篇
  1997年   423篇
  1996年   440篇
  1995年   485篇
  1994年   431篇
  1993年   412篇
  1992年   401篇
  1991年   389篇
  1990年   382篇
  1989年   358篇
  1988年   299篇
  1987年   260篇
  1986年   306篇
  1985年   299篇
  1984年   331篇
  1983年   306篇
  1982年   325篇
  1981年   313篇
  1980年   276篇
  1979年   283篇
  1978年   207篇
  1977年   218篇
  1975年   176篇
  1974年   194篇
  1973年   181篇
  1972年   206篇
排序方式: 共有10000条查询结果,搜索用时 328 毫秒
991.
In the Anthropocene, coupled human and natural systems dominate and only a few natural systems remain relatively unaffected by human influence. On the one hand, conservation criteria based on areas of minimal human impact are not relevant to much of the biosphere. On the other hand, conservation criteria based on economic factors are problematic with respect to their ability to arrive at operational indicators of well‐being that can be applied in practice over multiple generations. Coupled human and natural systems are subject to economic development which, under current management structures, tends to affect natural systems and cross planetary boundaries. Hence, designing and applying conservation criteria applicable in real‐world systems where human and natural systems need to interact and sustainably coexist is essential. By recognizing the criticality of satisfying basic needs as well as the great uncertainty over the needs and preferences of future generations, we sought to incorporate conservation criteria based on minimal human impact into economic evaluation. These criteria require the conservation of environmental conditions such that the opportunity for intergenerational welfare optimization is maintained. Toward this end, we propose the integration of ecological–biological thresholds into decision making and use as an example the planetary‐boundaries approach. Both conservation scientists and economists must be involved in defining operational ecological–biological thresholds that can be incorporated into economic thinking and reflect the objectives of conservation, sustainability, and intergenerational welfare optimization.  相似文献   
992.
993.
Regional Environmental Change - Soil carbon stocks of 29 plots along a transect through tropical Brazil showed only minor soil carbon losses after land use shift, although replacement of...  相似文献   
994.
Conservation decision makers commonly use project‐scoring metrics that are inconsistent with theory on optimal ranking of projects. As a result, there may often be a loss of environmental benefits. We estimated the magnitudes of these losses for various metrics that deviate from theory in ways that are common in practice. These metrics included cases where relevant variables were omitted from the benefits metric, project costs were omitted, and benefits were calculated using a faulty functional form. We estimated distributions of parameters from 129 environmental projects from Australia, New Zealand, and Italy for which detailed analyses had been completed previously. The cost of using poor prioritization metrics (in terms of lost environmental values) was often high—up to 80% in the scenarios we examined. The cost in percentage terms was greater when the budget was smaller. The most costly errors were omitting information about environmental values (up to 31% loss of environmental values), omitting project costs (up to 35% loss), omitting the effectiveness of management actions (up to 9% loss), and using a weighted‐additive decision metric for variables that should be multiplied (up to 23% loss). The latter 3 are errors that occur commonly in real‐world decision metrics, in combination often reducing potential benefits from conservation investments by 30–50%. Uncertainty about parameter values also reduced the benefits from investments in conservation projects but often not by as much as faulty prioritization metrics.  相似文献   
995.
996.
Polychlorinated biphenyls (PCBs) are a group of persistent organic pollutants consisting of 209 congeners. Oxidation of several PCB congeners to hydroxylated PCBs (OH-PCBs) in whole poplar plants has been reported before. Moreover, 2,2′,3,5′,6-pentachlorobiphenyl (PCB95), as a chiral congener, has been previously shown to be atropselectively taken up and transformed in whole poplar plants. The objective of this study was to determine if PCB95 is atropselectively metabolized to OH-PCBs in whole poplar plants. Two hydroxylated PCB95s were detected by high-performance liquid chromatography-mass spectrometry in the roots of whole poplar plants exposed to racemic PCB95 for 30 days. The major metabolite was confirmed to be 4′-hydroxy-2,2′,3,5′,6-pentachlorobiphenyl (4′-OH-PCB95) by gas chromatography-mass spectrometry (GC-MS) using an authentic reference standard. Enantioselective analysis showed that 4′-OH-PCB95 was formed atropselectively, with the atropisomer eluting second on the Nucleodex β-PM column (E2-4′-OH-PCB95) being slightly more abundant in the roots of whole poplar plants. Therefore, PCB95 can at least be metabolized into 4′-OH-PCB95 and another unknown hydroxylated PCB95 (as a minor metabolite) in whole poplar plants. Both atropisomers of 4′-OH-PCB95 are formed, but E2-4′-OH-PCB95 has greater atropisomeric enrichment in the roots of whole poplar plants. A comparison with mammalian biotransformation studies indicates a distinctively different metabolite profile of OH-PCB95 metabolites in whole poplar plants. Our observations suggest that biotransformation of chiral PCBs to OH-PCBs by plants may represent an important source of enantiomerically enriched OH-PCBs in the environment.  相似文献   
997.
Spatial synchrony, defined as the correlated fluctuations in abundance of spatially separated populations, can be caused by regional fluctuations in natural and anthropogenic environmental population drivers. Investigations into the geography of synchrony can provide useful insight to inform conservation planning efforts by revealing regions of common population drivers and metapopulation extinction vulnerability. We examined the geography of spatial synchrony and decadal changes in these patterns for grassland birds in the United States and Canada, which are experiencing widespread and persistent population declines. We used Bayesian hierarchical models and over 50 years of abundance data from the North American Breeding Bird Survey to generate population indices within a 2° latitude by 2° longitude grid. We computed and mapped mean local spatial synchrony for each cell (mean detrended correlation of the index among neighboring cells), along with associated uncertainty, for 19 species in 2, 26-year periods, 1968–1993 and 1994–2019. Grassland birds were predicted to increase in spatial synchrony where agricultural intensification, climate change, or interactions between the 2 increased. We found no evidence of an overall increase in synchrony among grassland bird species. However, based on the geography of these changes, there was considerable spatial heterogeneity within species. Averaging across species, we identified clusters of increasing spatial synchrony in the Prairie Pothole and Shortgrass Prairie regions and a region of decreasing spatial synchrony in the eastern United States. Our approach has the potential to inform continental-scale conservation planning by adding an additional layer of relevant information to species status assessments and spatial prioritization of policy and management actions. Our work adds to a growing literature suggesting that global change may result in shifting patterns of spatial synchrony in population dynamics across taxa with broad implications for biodiversity conservation.  相似文献   
998.
Conventional wastewater treatments are not efficient in removing parabens, which may thus end up in surface waters, posing a threat to aquatic biota and hu  相似文献   
999.
Abstract

The presence of diethyl-phthalate (DEP), dibutyl-phthalate (DBP), butylbenzyl-phthalate (BBP), diethylhexyl-phthalate (DEHP) and diisononyl-phthalate (DINP) was determined in 295 tequila samples. They were grouped by age of maturation (white, aged, extra aged or ultra aged) and year of production (between 2013 and 2018). Gas Chromatography coupled with Mass Spectrometry was used for identification and quantification. The results showed that 65 samples (22% of the total) were phthalate free. DEP (0.13-0.27?mg/kg), BBP (0.05–2.91?mg/kg) and DINP (1.64–3.43?mg/kg) were detected in 11 (3.73%), 37 (12.54%) and 5 (1.69%) samples, respectively. But, these concentrations did not exceed the maximum permitted limits (MPL) of phthalates for alcoholic beverages. DBP (0.01–2.20?mg/kg) and DEHP (0.03–4.64?mg/kg) were detected in 96 (32.54%) and 224 (75.93%) samples, from them only 10 (3.39%) and 15 (5.08%) samples, respectively, exceeded the MPL for alcoholic beverages and they were few tequilas produced in the year 2014 or before. DEHP was the most frequent phthalate found in tequila and observed DEHP concentrations were 2-times higher in ultra aged tequilas compared to those in white tequilas. We concluded that all tequilas produced in 2015 and after, satisfied the international standards for these compounds.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号