首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   3篇
  国内免费   13篇
综合类   31篇
评价与监测   7篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   4篇
  2017年   3篇
  2016年   12篇
  2015年   4篇
  2014年   7篇
  2013年   2篇
  2011年   1篇
排序方式: 共有38条查询结果,搜索用时 234 毫秒
21.
科学制定污染物排放标准是治理环境污染问题的重要措施之一,欧美等发达国家分别制定了适合本国国情的污染物排放标准,并进行了多次修订。为借鉴欧美等发达国家在电力行业污染物控制的成功经验和科学制定我国火电大气污染物排放标准,对比分析了中美欧等国家燃煤电厂大气污染物SO2,NOx和颗粒物排放控制历程,当前中美欧现行燃煤电厂排放标准和控制技术水平及我国火电污染物控制现状,提出了科学制定我国燃煤电厂大气污染物排放标准的建议。  相似文献   
22.
结合常规污染物监测、PM2.5化学组分监测、激光雷达监测和颗粒物数浓度及粒径监测等手段,对2017年5月影响北京市的一次沙尘天气过程进行分析。结果表明:5月4日凌晨起沙尘天气开始影响北京市,延庆、官园和通州3个站点PM10峰值浓度分别为2 091、2 245、2 590 μg/m3,体现了该次沙尘天气影响程度之重。PM2.5浓度与PM10变化一致,也达到重度污染的水平。沙尘天气移动路径是沿着区域西北至东南方向。沙尘天气主体从3 km左右的高空进入北京市,随后逐渐渗透至1 km高度以及地面,且沙尘层厚度较高,覆盖了地面至3 km的高度。沙尘天气过程中OM和Ca2+组分增幅最大。在沙尘天气影响严重时间段,沙尘天气源与生物质燃烧源比例之和大于50%,最高值为67.6%。沙尘天气过程中颗粒物峰值粒径为0.965~1.037 μm。  相似文献   
23.
在简要回顾APEC期间的空气质量情况的基础上,从多方面较系统的分析了APEC期间北京市空气质量的变化特征,包括各项污染物浓度水平的同比分析、不同区域不同类别站点小时浓度的百分数分布及变化情况分析、污染物日变化规律变化特征分析、空气质量改善效果的空间分布特征分析、颗粒物组分变化特征分析、污染来源解析模型、数值污染模型等方法,力求从多个方面深入了解APEC控制措施对北京市污染水平、污染特征造成的影响,并利用组分、模型等方法定性定量的评估主要空气质量影响因素、不同的污染控制措施对APEC期间空气质量改善的作用及贡献。结果表明,APEC期间,北京市空气质量得到明显改善,空气质量基本处于优良级别,各项污染物浓度大幅下降,APEC污染控制期各项污染物的百分位数浓度与无控制期出现明显分离特征,污染物的日变化低浓度持续时间更长且增长更缓慢。  相似文献   
24.
烟花爆竹燃放对北京市空气质量的影响研究   总被引:2,自引:2,他引:0  
结合常规污染物浓度和PM_(2.5)化学组分浓度,分析了2015年春节期间烟花爆竹燃放对北京市空气质量的影响。结果表明:烟花爆竹燃放会在短时间内造成严重的大气污染,其中对SO2、PM_(2.5)和PM10的影响最为显著。除夕夜间良乡、官园和怀柔3个监测站点的PM_(2.5)质量浓度峰值分别达730.5、343.4、762.2μg/m~3,为2月17—25日和3月4—8日(观测期间)平均值的5.2、3.1、7.1倍。烟花爆竹燃放对PM_(2.5)组分中的SO_4~(2-)、K+和Cl-的影响最为显著,除夕夜间监测中心点位的SO_4~(2-)、K~+和Cl~-质量浓度峰值分别达92.2、95.6、57.4μg/m~3,为观测期间平均值的4.5、10.5、6.8倍。烟花爆竹燃放产生的气态前体物和NO_3~-、SO_4~(2-)、NH+4、OC等PM_(2.5)二次化学组分在不利的气象条件下会发生化学反应和物理积累,造成PM_(2.5)浓度升高,产生持续性的大气污染。根据各污染物与NH+4的质量浓度比推算得出,除夕、"破五"和元宵节3个时段烟花爆竹燃放对K~+、Cl~-、SO_4~(2-)、SO_2和PM_(2.5)浓度的平均贡献率分别为78.4%、61.1%、37.4%、38.7%和30.1%。  相似文献   
25.
2014年APEC会议期间北京市空气质量分析   总被引:6,自引:2,他引:4  
为研究区域性大气污染物减排措施对北京市空气质量的影响,结合地面观测的气象数据、能见度、常规污染物浓度和PM2.5化学组分,对APEC会议期间北京市的空气质量进行分析.结果表明,APEC期间的11月4日和8-10日两个过程,大气污染物扩散条件较不利,易出现污染过程.APEC期间,密云、榆垡、昌平、奥体中心和西直门北大街5个站点SO2、NO2、O3、PM10和PM2.5平均浓度分别为(8.0±8.0)、(37.4±21.6)、(36.0±22.5)、(67.7±43.4)和(48.6±42.2) μg·m-3.与近5年同期(PM2.5为去年同期)相比,SO2、NO2、PM10和PM2.5日均浓度分别下降了61.5%、40.8%、36.4%和47.1%,O3日均浓度上升了101.8%.从污染物日变化规律来看,减排措施的环境效果在大气污染物扩散条件较有利的时段体现的更明显.在APEC期间,PM2.5浓度在前半夜保持平稳,未出现积累峰值.与秋季非APEC期间相比,PM2.5中大部分组分浓度均有明显下降,二次离子组分降幅尤为明显.同时,本文测算了APEC期间减排措施的"净环境效益",发现减排措施使得SO2、NO2、PM10和PM2.5浓度分别降低了74.1%、48.0%、66.6%和64.7%,O3浓度上升了189.2%.与10月份的大气污染过程相比,同样在不利气象条件下,实施减排措施后PM2.5浓度峰值明显降低,积累速度明显减缓.  相似文献   
26.
2015—2016年中国城市臭氧浓度时空变化规律研究   总被引:4,自引:3,他引:1  
为探究中国大陆城市O3污染状况时空变化的总体特征,运用时空统计分析和GIS技术对2015—2016年全国开展O3常规监测的336个城市进行分析,揭示近两年O3浓度及不同等级污染天数的时空变化格局,并着重对比分析"三区十群"区域内外O3浓度的变化差异.结果表明:2015—2016年期间,全国336个城市中,有258个城市2016年年均O3浓度值较2015年升高,形成了新的O3污染空间格局;京津冀及周边地区、长三角地区、中部的河南、武汉污染较重,东南沿海和西南地区的云南、西藏污染相对较轻;长三角地区和山东城市群是中国O3核心污染区域,陕西、山西及安徽三省O3浓度较2015年有大幅升高.O3的空间分布与NOx排放量、生成控制型等因素密切相关.已有的研究区域中除华北平原和四川盆地等地区的郊区点位以外,我国大多数地区的O3生成控制型属于VOCs控制型.研究结果有利于从宏观上直接对比评估国家大气污染重点防控区内外O3污染特征变化的差异,从而针对性地开展环境污染防控.  相似文献   
27.
北京城区臭氧日变化特征及与前体物的相关性分析   总被引:17,自引:0,他引:17  
对2012年12月至2013年11月北京城区12个自动空气监测子站的臭氧及其前体物的浓度进行了分析,探讨北京城区臭氧浓度的日变化特征以及与前体物的关系.研究发现,北京市城区臭氧在5~8月份维持相对较高浓度,其他月份则较低.臭氧浓度呈现单峰型分布,基本在15:00、16:00达到峰值;同时臭氧呈现较明显的“周末效应”,即周末臭氧浓度高于工作日浓度. CO、NO、NO2和NOx等前体物多呈现双峰型分布,与O3均呈显著的负相关性,相关性在夏季较低.通过大气氧化剂OX和NOx的拟合方程发现,冬季北京市城区OX在白天受区域O3影响相对较大,在夜间受局地NOx污染影响相对较大.计算了在理想情况下的城区NO2光解速率,春季、夏季、秋季和冬季的平均值分别为0.180,0.209,0.169,0.149min-1.在白天臭氧的高浓度时段城区O3、NO和NO2体现出近似光化学平衡态的特征.  相似文献   
28.
利用多元线性回归方法(REG)将多模式空气质量预报系统中3个模式(CMAQ、CAMx和NAQPMS)对北京市2016年PM2.5的预报结果和观测数据进行集合,并对集合结果进行评估。结果表明:①不同模式的预报结果不尽相同,均能够反映2016年北京地区PM2.5随时间的变化趋势,CMAQ、CAMx和NAQPMS相关系数为0.6~0.9,标准化平均偏差为-0.6~0.6。3个模式对重污染峰值预报都存在偏差,NAQPMS预报偏差低于其他模式;②基于多元线性回归集成预报模型能显著提高日均PM2.5预报的准确率,能较好地改进不同季节模式整体高估或者低估的系统性偏差现象,春季国控平均偏差由-23 μg/m3改善至-2.3 μg/m3,冬季平均偏差降低近20 μg/m3;③利用多元线性回归方法对2016年红色预警期间小时PM2.5订正结果显示,相关系数提高了0.13,均方根误差降低了20~30 μg/m3,并且对峰值浓度有较好的调整,预报峰值更为接近实况峰值,特别是对北部地区的改进效果较为明显,反映了实际观测数据对空气质量数值模式预报修正的研究意义和可行性。  相似文献   
29.
2013年北京市NO_2的时空分布   总被引:4,自引:2,他引:2  
对2013年北京市35个自动空气质量监测子站的NO2数据进行分析,探讨NO2的时间分布特征、空间分布特征以及与PM2.5和大气氧化性的相关性关系.结果表明,NO2浓度由高到低的季节依次是冬季、秋季、春季和夏季,平均浓度分别为66.6、58.3、54.7μg·m-3和45.8μg·m-3;NO2浓度由高到低的监测站依次为交通站、城区站、郊区站和区域站,年均浓度分别为78.6、57.9、48.5μg·m-3和40.3μg·m-3.NO2月均浓度呈波浪型分布,在1月份、3月份、5月份和10月份各出现一个峰值.整体来看,区域站NO2日变化曲线呈现单峰型分布,其他站点为双峰型分布.2013年NO2浓度呈现"反周末效应",即周末大部分时段NO2浓度高于工作日.分地区来看,年均NO2浓度由高到低的依次是城六区、西南部、东南部、西北部和东北部.各站点NO2浓度与PM2.5和OX浓度均为显著正相关,表明NO2可以通过增加前体物浓度和增强大气氧化性两方面造成PM2.5浓度升高.  相似文献   
30.
2015年1月下旬北京市大气污染过程成因分析   总被引:7,自引:2,他引:5  
采用地面观测和数值模拟相结合的方式,对2015年1月下旬北京市两次PM2.5污染过程进行分析。研究表明,在第1次过程中PM2.5浓度经过3个抬升阶段达到峰值,过程前期区域传输的作用明显,随后区域传输和本地污染积累、化学反应共同加重了污染的程度;3个浓度抬升阶段中均出现过PM2.5浓度“跃升式”增长,且污染水平越重,浓度跃升的幅度越大。第2次过程是一次典型的静风、高湿度下的PM2.5持续性增长过程,主要是本地污染物积累和发生化学反应二次生成导致的。大气氧化性分析和SOR、NOR分析均验证了对两次污染过程特征和成因的推断。数值模拟结果表明,第1次污染过程中区域传输对不同站点PM2.5的贡献率在15.2%~68.7%之间;第2次过程区域传输的贡献率在12.8%~46.3%之间。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号