首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   12篇
  国内免费   31篇
安全科学   3篇
综合类   52篇
基础理论   1篇
评价与监测   8篇
  2024年   3篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2019年   5篇
  2018年   1篇
  2017年   8篇
  2016年   8篇
  2015年   6篇
  2014年   8篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2010年   5篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  1997年   1篇
排序方式: 共有64条查询结果,搜索用时 109 毫秒
41.
广东省臭氧污染特征及其来源解析研究   总被引:12,自引:0,他引:12  
使用广东省近年大范围长期连续臭氧观测数据分析了珠三角与广东省的臭氧污染特征,并使用NAQPMS模型研究了广东省与典型城市不同季节的臭氧来源情况.结果表明:2014—2016年广东省的臭氧污染局部在改善.珠三角的臭氧浓度水平总体高于粤东西北地区,广东省臭氧总体上呈现出珠三角中南部和粤东东部部分地区较高、粤西污染相对较轻的分布态势.广东省的臭氧夏秋季浓度较高,冬春季浓度较低.广东省臭氧主要来源于本地排放,夏季占比为57%,其余季节约占40%,臭氧的跨省输送特征明显.珠三角西南部春夏季臭氧本地贡献约为50%,但秋冬季仅占19%~28%.若要减轻广东的臭氧污染,建议实施臭氧消峰行动,即在夏秋季节严控珠三角地区的臭氧前体物排放,特别是珠三角中部广州、佛山与东莞等城市的排放要重点控制.同时,强化粤东西北地区与周边省份的协同减排.  相似文献   
42.
利用耦合了污染源在线追踪模块的化学传输模式NAQPMS (Nested Air Quality Prediction Model System),结合地面细颗粒物(PM2.5)的小时观测数据,模拟了2014年1、4、7、10月4个月份武汉地区PM2.5浓度时空分布特征,量化了本地、武汉城市圈及远距离地区对武汉PM2.5浓度贡献.研究发现,2014年武汉市PM2.5年均浓度为85.3 μg·m-3,污染天(PM2.5日均值≥75 μg·m-3)占全年总天数的47.9%.细颗粒物的月均值呈现出季节性特征,即冬季污染最为严峻,1月均值为199.1 μg·m-3,PM2.5浓度超标持续一整月;夏季空气质量最好,春秋介于两者之间.模拟的PM2.5平均浓度在空间上大致呈现"城区高,郊区低"的分布态势.污染物区域来源解析发现,武汉市本地排放源贡献在1月最低,为34.1%,表明外来源贡献对长期灰霾的形成起决定性作用.7月本地源影响最显著(65.7%),和毗邻城市源(23.1%)一起成为夏季污染物的主要来源.4月和10月本地排放贡献比分别为49.1%和42.1%.4个月份,武汉城市圈对该市PM2.5浓度的贡献差异不大,范围在20.8%~24.1%.受大尺度天气系统的影响,远距离传输贡献率趋势与本地来源相反,占10.6%~35.3%.研究结果表明污染气团跨界输送对武汉不同季节PM2.5浓度有重要贡献.在冬季大范围污染背景下,污染物区域大范围协同控制才能有效减缓武汉PM2.5污染问题;而夏季对本地及近周边城市的减排措施可以有效改善武汉的空气质量.  相似文献   
43.
以中国一氧化碳(CO)排放反演为例,利用敏感性分析手段评估了集合数目、局地化半径、膨胀因子、观测站点密度和观测数据时间分辨率对排放清单反演的影响.结果表明:站点密度是影响排放反演的最重要参数.在不同站点密度下,反演的中国CO排放总量差异可达34%.同时,站点密度还会影响排放反演对其他参数的敏感性.随着站点密度的降低,排放反演对局地化半径、集合数目和膨胀因子参数变得更为敏感,但对观测数据时间分辨率的敏感性则有所下降.因此在站点稀疏地区,局地化半径是排放反演的主要影响参数,集合数目和膨胀因子次之;但在观测站点密集地区,局地化半径和观测数据时间分辨率是主要的影响参数,而膨胀因子和集合数目的影响相对较小.该研究能够为不同尺度的排放反演开展参数优化提供借鉴.在中国CO排放反演案例(站点密度为1.55个/104km2)中,建议反演参数设置为:集合数目为50、局地化半径为100km、最大似然估计膨胀方案(MLE)、日均或小时观测数据.  相似文献   
44.
安徽省酸雨分布特征和发展趋势及其影响因子   总被引:12,自引:4,他引:8  
利用气象部门7个酸雨观测站资料、安徽及周边部分省份煤耗量、卫星观测的对流层NO2柱含量资料,分析了安徽酸雨的空间分布、发展趋势及酸雨发生频率上升的原因;同时,借助轨迹分析和聚类分析的方法分析了输送形势对各地酸雨的影响.2006~2008年间安徽酸雨频率表现为夏季低、秋季高,3 a降水均值呈酸性,其中合肥、安庆、马鞍山和蚌埠为中度酸性.在空间分布上表现为皖南到江淮之间最为严重,向北递减.阜阳、铜陵和黄山的降水pH值比较集中,各有75%以上位于6.00~7.50(阜阳)、5.00~6.00(铜陵)和5.00~6.50(黄山);其它测站的pH值分布范围比较大,峰值分别位于4.00~4.50(合肥和安庆)、5.00~5.50(马鞍山)和5.50~6.00(蚌埠).与10 a前相比,各地酸雨发生频率都大幅度上升.后向轨迹-聚类分析结果表明,酸雨发生频率与污染物的外来输送密切相关,各地都是来自偏东南到偏东北方向,尤其是经过江苏或浙江的气团对应着最高的中度以上酸雨发生频率,说明长江三角洲等经济发达地区的大气污染物排放对安徽酸雨有较大贡献.统计分析发现合肥酸雨变化趋势与安徽、浙江和江苏的煤耗量、对流层NO2柱含量的变化趋势都很一致(相关系数均大于0.7),再次说明该市酸雨增多、变强与区域污染物排放有密切联系.  相似文献   
45.
通过2013~2017年徐州市环境监测资料分析季风影响下主要大气复合污染物PM2.5和O3的相关性,并基于气象观测资料进一步探究PM2.5和O3相互作用机制的季节变化特征.结果表明:夏季风季节,PM2.5和O3呈正相关,相关系数高达0.56;冬季风季节,PM2.5和O3呈负相关,相关系数为-0.34,均通过了99%的置信检验,表明徐州市PM2.5和O3相互作用呈现相反的季节变化.夏季风季节,太阳辐射强,气温较高,大气氧化性较强,O3主导大气氧化性,大气氧化性通过促进二次颗粒物生成使得PM2.5浓度升高,夏季风季节以O3对PM2.5的促进作用主导城市大气复合污染变化;冬季风季节,太阳辐射弱,气温较低,大气氧化性较弱,高浓度的PM2.5削弱太阳辐射抑制大气光化学,导致O3生成率降低,冬季风季节以PM2.5对O3的抑制作用主导城市大气复合污染变化.  相似文献   
46.
随着城市化和工业化水平的逐渐提高,河南省的空气污染问题也日益严重.利用嵌套网格空气质量模式(NAQPMS),数值模拟了2013年7月-2014年6月年河南省大气细颗粒物及其前体物(NO2、SO2、PM10、PM2.5)的地面浓度,并量化了其主要来源.结果表明:模式能够较好地再现污染物的时空演化特征.整体来讲,河南省PM2.5的高值区集中在中部和北部地区,呈现冬季高、夏季低的特点.在线源解析模拟发现,河南省不同地区PM2.5的来源有所不同,中西部地区主要来自于本地,而在东部和北部地市,来自周边省份的区域输送更为显著,其贡献达到40%~50%,且在PM2.5浓度的高值区更为明显.就行业贡献而言,居民源、工业源和机动车排放是河南省PM2.5浓度的主要来源,其浓度贡献分别为23.7 μg·m-3(贡献比例24%,下同)、20.6 μg·m-3(21%)和21.3 μg·m-3(22%),电厂、农牧业和地面扬尘的浓度贡献分别为7.0 μg·m-3(7%)、8.7 μg·m-3(9%)和17.8 μg·m-3(18%).受居民源影响最大的地区是河南中东部和北部地市,其贡献达到PM2.5浓度的27%、27%和25%.工业源影响最大的地区集中在太行山南部地市,其浓度贡献为26.4 μg·m-3(24%),在其他地市的贡献为17%~23%.机动车对河南东部影响最为显著,其浓度贡献为22.9 μg·m-3(24%).电厂和农畜牧业对全省PM2.5的贡献分布比较均匀,分别为6%~9%和8%~10%.分析不同浓度下的PM2.5来源,发现工业源和扬尘贡献随PM2.5浓度增加逐渐降低,而居民源和机动车排放的贡献则有所增加,在PM2.5浓度高于100 μg·m-3期间,达到22%和20%.  相似文献   
47.
河南省一次PM2.5污染过程区域性影响数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究区域输送对河南省PM2.5重污染的影响,利用中国科学院大气物理研究所自主研发的NAQPMS(嵌套网格空气质量预报)模式模拟了河南省2014年1月12─19日的一次污染事件. 污染期间,河南省所有城市ρ(PM2.5)小时均值最大值均超过250 μg/m3,达到了严重污染水平. 利用基于NAQPMS的污染源来源追踪方法评估了本地排放和区域输送的影响. 结果表明:研究期间,本地排放和区域输送对河南省ρ(PM2.5)的平均贡献率分别达到了50.6%和49.4%. 在区域输送方面,安徽省对河南省ρ(PM2.5)的贡献率(10.0%)最高,山西省(9.2%)、陕西省(8.5%)次之,河北省(仅2.1%)最低. 分地区来看,河南省中部地区以本省累积(贡献率为61.4%,下同)为主,东部地区以安徽省(30.4%)输送为主,南部地区以本省累积(45.1%)、湖北省(14.1%)及安徽省 (13.7%)输送为主,西部地区以陕西省(35.4%)输送为主,北部地区则主要以本省累积(58.1%)及山西省(20.7%)输送为主. 研究表明,尽管河南省各地区同时出现高污染,但其来源不同,有必要采取区域联防联控措施.   相似文献   
48.
京津冀区域重污染天气过程数值预报评估新方法   总被引:11,自引:3,他引:8  
利用区域空气质量监测数据、空气质量模式数值预报产品及天气图资料,建立了一种适用于区域重污染天气过程预报的评估方法,将其用于评估NAQPMS模式系统对2013年和2014年京津冀地区静稳型、沙尘型和特殊型3类重污染天气过程的预报能力,并探讨了重污染天气过程早报、晚报及漏报的可能气象条件原因,以提高预报准确率.结果表明:数值模式系统提前3 d预报重污染天气过程的预报准确率可达57%,秋冬季预报效果好于其他季节,静稳型预报效果好于沙尘型和特殊型.对模式AQI预报结果统计发现,当预报AQI值达到150以上时,实际发生重污染天气过程的概率较大,如定义AQI等于150作为重污染天气预警临界值,模式预报准确率可提高至70%以上.天气系统对污染过程预报有重要影响,WRF气象模式对中低层天气系统位置及强度预报偏差是导致静稳型污染过程早报和晚报的一个重要原因.  相似文献   
49.
多模式模拟评估奥运赛事期间可吸入颗粒物减排效果   总被引:12,自引:5,他引:7  
以空气质量多模式系统为工具,分析奥运赛事期间可吸入颗粒物(PM10)浓度大幅减小特征,从气象场和排放源两方面研究PM10浓度大幅减小的主要原因.多模式系统由嵌套网格空气质量模式(NAQPMS)、通用空气质量多尺度模式(CMAQ)和复杂大气空气质量三维模式(CAMx)3个空气质量复合模型组成,并以中尺度气象模式(MM5)和稀疏矩阵排放处理模型(SMOKE)提供统一气象场及排放源.研究对比2006年8月、2008年8月两组气象条件下北京PM10浓度水平及模拟效果,结果表明奥运赛事期间PM10浓度大幅减小的主要原因不是气象因素,而是由于额外措施引起的PM10排放减少.同时采用多模式系统数值模拟反向评估,获得北京奥运赛事期间奥运控制及额外减排措施引起的PM10减排量,结果表明,奥运赛事期间所有额外控制措施对颗粒物浓度效果相当于在2008年8月气象条件下,削减大约200t.d-1的无组织PM10排放,相当于北京正常时期PM10排放的50%.  相似文献   
50.
苏航  银燕  朱彬  王自发  李杰  潘小乐 《中国环境科学》2012,32(11):1921-1932
利用耦合了Wesely大叶阻力干沉降模型的嵌套网格空气质量预报系统NAQPMS,对环渤海地区SO2和NO2的干沉降敏感因子、干沉降通量、空气质量进行模拟分析.结果表明,大气稳定度、太阳辐射、季节、下垫面类型为干沉降的主要敏感因子.大气越稳定,干沉降速率越小.太阳辐射越强,干沉降速率越大.SO2早秋干沉速率最小,冬季最大;NO2春、夏、早秋、晚秋的干沉降速率大致相同,冬季最小.SO2的干沉降速率在水面上较大,在沙漠上较小;NO2的干沉降速率在农田上较大,在水面上较小.由于不同敏感因子的共同作用,使得环渤海大部分地区SO2干沉降通量密度为0.05~0.25mg/(m2×s),NO2干沉降通量密度均为0.05~0.30mg /(m2×s),高值区均主要分布在河北南部、山东西北部以及辽宁中部的部分地区.干沉降通量密度从大到小依次为秋季、春季、冬季和夏季,白天干沉降通量密度普遍大于夜间,且在渤海海面上也有一定的干沉降通量.由于干沉降、源排放、输送等作用的共同影响,使得环渤海地区SO2平均浓度为(5~20)′10-6,NO2平均浓度大致在(20~60)′10-6,高值区主要出现在河北南部、山东西北部以及辽宁中部的部分地区.夏季个别地区浓度较高,大部分地区浓度较低,春、秋、冬3季大部分地区浓度较高.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号