首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   2篇
  国内免费   13篇
安全科学   2篇
环保管理   3篇
综合类   25篇
污染及防治   5篇
评价与监测   10篇
  2024年   1篇
  2022年   2篇
  2021年   5篇
  2018年   1篇
  2017年   4篇
  2015年   3篇
  2014年   11篇
  2013年   3篇
  2012年   9篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2001年   1篇
  2000年   1篇
排序方式: 共有45条查询结果,搜索用时 453 毫秒
31.
简要介绍了法国Losphere公司ALS300型偏振Mie散射激光雷达的基本结构、探测原理及反演算法,并通过在重庆主城区2009年11月23~27日一次典型灰霾天气条件下连续的气溶胶激光雷达探测结果分析得出,重庆冬季典型灰霾天气下PBL平均高度约为600米,AOD值在4及以上。  相似文献   
32.
为探讨城市加油站苯系物污染状况和对不同受众健康的影响,于2009—2011年采用苏码罐采样、GC-MS分析法对重庆市3个代表性加油站及周边环境空气中苯系物进行采样和分析,并采用健康风险四步评价法,对相关受众进行环境健康风险评价。结果表明,不同加油站、不同点位苯系物体积分数分布存在较大差异,体积分数最高达3291.16×10-9,卸油区和加油区苯系物体积分数相对较高,站内环境点和站周界点次之,环境敏感点相对最低。甲苯、二甲苯和苯是最主要的组成部分,三甲苯、乙苯,苯乙烯基本未检出。加油站一线工作人员、其他工作人员、周边居民和机动车驾驶员均受到不同程度的致癌风险,从高到低为加油站一线工作人员、加油站其他工作人员(周边居民)、机动车驾驶员,其中,加油站一线工作人员风险较大,其他3类人员致癌风险均在可接受范围之内。非致癌风险主要存在于加油站一线工作人员。女性风险略大于男性。风险主要来自于苯。建议减少加油站油气排放,加强加油站工作人员,尤其是一线工作人员的防护。  相似文献   
33.
重庆主城区春季大气PM10及PM2.5中多环芳烃来源解析   总被引:1,自引:0,他引:1       下载免费PDF全文
于2012年春季采集了重庆主城区和缙云山共6个环境采样点的大气PM10、PM2.5样品,同步采集了燃煤尘、机动车尾气尘、施工机械尾气尘、船舶尾气尘、餐饮油烟尘、生物质燃烧尘及土壤尘等7类污染源,采集到有效受体样品139个、有效源样品233个,使用GC-MS分析样品中18种PAHs的质量浓度(ρ),分析了PM10、PM2.5上载带PAHs的污染特征,并分别运用比值法、主成分分析法及CMB(化学质量平衡)受体模型法对PM10、PM2.5中的PAHs进行来源解析,所得源解析结果较为一致. 结果表明:重庆主城区大气PM10、PM2.5中ρ(PAHs)较低,ρ(PAHs)分别为22.03~31.71、19.02~29.92 ng/m3,其中位于工业区新山村采样点的ρ(PAHs)最高. PM10载带的PAHs有86%~99%集中在PM2.5中,说明PAHs主要富集在PM2.5中. 重庆主城区大气PM10、PM2.5载带的PAHs主要来自机动车尾气尘和燃煤尘的贡献,这2类源对PM10的贡献率分别为25.89%、32.80%;而在PM2.5中,机动车尾气尘的贡献率较高,可达62%左右.   相似文献   
34.
本文结合2011年重庆区域灰霾统计结果表明,灰霾污染状况已逐步由重度和严重灰霾向轻中度灰霾污染过渡,污染程度得到好转。灰霾/非灰霾对比发现颗粒物PM2.5污染浓度较高,超标率较大,占颗粒物污染较大比重,且对能见度影响显著。2011年BC/PM2.5平均比值为18%左右,且比值时间序列变化趋势与全年灰霾污染总体发生趋势相符。  相似文献   
35.
植物修复土壤重金属被普遍认为是清洁、经济的生物修复方法。为了提高生物修复土壤重金属污染的效率,在室内盆栽实验中添加柠檬酸作为螯合剂促进龙葵对重金属的吸收,并研究其生理活性的变化。结果表明:当添加柠檬酸浓度为10 nmol/kg时,龙葵生物量显著提高(P<0.05),各部分生物量表现为:茎>叶>根;随着柠檬酸浓度的增加,龙葵对重金属Cd的吸收量显著(P<0.05)增加,在10 nmol时总吸收量最大,为229.85μg/g DW;龙葵对Cd、Pb的富集系数均在柠檬酸浓度为5 nmol/kg时达到最大;Pb吸收量随柠檬酸浓度增加表现出先增大后减小的趋势;添加柠檬酸促进了龙葵对Cd的吸收,增强了抗氧化酶活性,而对Pb的吸收效果不明显。  相似文献   
36.
重庆主城区春季典型天气的大气颗粒物浓度变化分析   总被引:4,自引:2,他引:2  
选取重庆大气超级站2010年春季典型天气时段的颗粒物实时监测数据,将β射线法和震荡天平法(TEOM法)的PM10监测值进行了比对,分析了PM10、PM2.5和PM1质量浓度百分比例关系及10μm以下颗粒物数浓度随粒径大小的分布规律。结果表明,β射线法与TEOM法的PM10监测结果基本一致,β射线法比TEOM法监测值平均偏低5.4%;PM2.5、PM1和PM0.5的数浓度均占PM10数浓度的98%以上;PM0.25数浓度占PM10数浓度的平均比例为34.9%,占PM1数浓度的平均比例为35.1%;TEOM法监测的PM2.5占PM10日均质量浓度平均比例为51.2%;β射线法监测的PM2.5占PM10日均质量浓度平均比例为56.9%,PM1占PM10平均比例为30.9%。  相似文献   
37.
重庆市春季大气颗粒物浓度的对比监测分析   总被引:2,自引:1,他引:1  
通过2012年春季在重庆大气超级站进行的PM10和PM2.5手工采样与自动仪器的对比监测,分析了自动监测与手工监测的一致性及造成偏差的原因,并对PM2.5与PM10浓度的比值关系进行了分析。结果表明:MP101M型颗粒物自动监测仪用于监测PM10时系统性误差偏高,仪器初始精密度存在负偏差;用于监测PM2.5时系统性误差在允许范围之内,仪器初始精密度存在较大负偏差;PM10和PM2.5的手工采样和自动仪器监测值之变化趋势具有非常高的一致性;PM2.5与PM10浓度比值范围在56.5%~90.4%,平均比值为(73.8±7.4)%。  相似文献   
38.
重庆市主城区大气水溶性离子在线观测分析   总被引:3,自引:0,他引:3  
2015年12月—2016年3月期间,利用在线气体与气溶胶成分监测仪(IGAC)在重庆市大气超级站开展连续观测分析,并捕捉到2次持续时间较长的空气重污染过程。对PM_(2.5)中9种水溶性离子及5种气态前体物的观测结果分析表明:NO_3~-、NH_4~+和SO_4~(2-)是重庆市主城区PM_(2.5)中主要的水溶性离子成分,其浓度均表现出明显的日变化特征,主要以(NH4)_2SO_4和NH_4NO_3的形式存在。NH_3和SO_2是最主要的气态污染物。2次重污染过程的水溶性离子组分有明显差异,细颗粒物累积型污染的NH_4~+、SO_4~(2-)、NO_3~-浓度高,二次转化十分明显;春节期间烟花爆竹集中燃放,Cl~-、K~+浓度高,主要属于一次排放;污染期间主要离子组分的同源性特征显著。  相似文献   
39.
以2019年3—4月臭氧(O3)污染小高峰为例,应用空气质量模型CAMx-DDM法分析了成渝地区O3浓度对人为源前体物排放敏感性,并用2020年"新冠"疫情防控及生产恢复导致的污染排放同比变化情景进行模拟验证.模拟结果表明成渝地区O3对NOx的敏感性为负、对VOCs的敏感性为正,其中,重庆市主城区、主城区以西地区、川南城市群和成都平原西部地区敏感性较高,与其自身污染排放源分布密集有关.以典型城市重庆市主城区为例,2019年3—4月O3小时浓度对NOx和VOCs的敏感性平均值分别为-19.14 μg·m-3和7.25 μg·m-3,两者表现出相反的日变化规律,且主要受到本地及周边区域的影响,模拟结果显示在所有区域VOCs排放均削减25%的情况下,3月和4月月均O3日最大8 h浓度分别下降2.62 μg·m-3和3.59 μg·m-3.敏感性模拟得到2020年3月四川省和重庆市NOx排放量同比下降8.00%和22.40%,VOCs同比下降1.00%和7.92%;4月NOx排放量同比上升5.00%和9.50%,四川省VOCs同比持平,重庆市上升3.63%,与同期"新冠"疫情防控及生产恢复导致的实际排放情况非常一致.  相似文献   
40.
万州城区夏季、冬季PM_(2.5)中有机碳和元素碳的浓度特征   总被引:5,自引:2,他引:3  
在位于三峡库区腹心的山地城市万州城区采集夏季和冬季PM2.5样品,采用热光反射法(Thermal Optical Reflection,TOR)测定了PM2.5中有机碳(OC)和元素碳(EC)的浓度,探讨了其污染特征及来源.结果发现,OC和EC在夏季的平均浓度分别为(7.09±1.86)μg·m-3和(3.49±0.64)μg·m-3;冬季分别为(16.82±6.87)μg·m-3和(6.21±2.06)μg·m-3,高于夏季,这可能与冬季当地居民生物质燃烧的贡献显著增加有关.冬季OC和EC显著线性相关(r=0.89),表明冬季两者的一次污染来源相近.冬季PM2.5中总碳(TC)和水溶性K+含量的相关性(r=0.88)高于夏季(r=0.69),表明冬季生物质燃烧对碳污染贡献显著.利用OC/EC比值法对二次有机碳(SOC)进行估算,SOC的浓度均值在夏季为(2.17±1.46)μg·m-3,占OC比例为28.18%±13.85%;冬季为(4.46±3.69)μg·m-3,占OC的23.13%±12.30%.通过计算PM2.5中8个碳组分丰度,初步判断机动车尾气排放和生物质燃烧是万州城区碳组分的主要来源.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号