首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   767篇
  免费   1篇
  国内免费   30篇
安全科学   14篇
废物处理   56篇
环保管理   56篇
综合类   89篇
基础理论   129篇
污染及防治   314篇
评价与监测   91篇
社会与环境   41篇
灾害及防治   8篇
  2023年   51篇
  2022年   107篇
  2021年   99篇
  2020年   25篇
  2019年   30篇
  2018年   36篇
  2017年   31篇
  2016年   41篇
  2015年   20篇
  2014年   35篇
  2013年   71篇
  2012年   23篇
  2011年   29篇
  2010年   24篇
  2009年   13篇
  2008年   25篇
  2007年   22篇
  2006年   18篇
  2005年   16篇
  2004年   12篇
  2003年   7篇
  2002年   5篇
  2001年   4篇
  2000年   9篇
  1999年   2篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1984年   2篇
  1983年   5篇
  1982年   5篇
  1981年   2篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1970年   1篇
  1969年   1篇
  1967年   1篇
  1966年   1篇
  1964年   2篇
排序方式: 共有798条查询结果,搜索用时 724 毫秒
331.
The (109)Cd K-shell X-ray fluorescence (XRF) technique was used to measure in vivo tibia lead concentrations of 34 young adults living in the state of Vermont (USA) and the province of New Brunswick (Canada). The subjects ranged in age from 18 to 35 years, and had no known history of elevated lead exposure. Measurement parameters were varied, using the same XRF system for both populations. Tibia lead concentrations were low for both groups, with mean values of 0.7 microg lead g(-1) bone mineral (Vermont) and 0.5 microg g(-1)(New Brunswick). No individual measurement exceeded 7 microg g(-1). Mean uncertainty values obtained for the Vermont and New Brunswick subjects were 4.1 microg g(-1) and 2.6 microg g(-1), respectively. Improved measurement uncertainty in the New Brunswick group was attributed to the use of a reduced source-to-skin distance (approximately 5 mm) and a longer measurement time (3600 seconds) using a weaker radioisotope source (< or =0.42 GBq). Measurement uncertainty tended to increase with body mass index. For a given body mass index, female subjects returned a measurement uncertainty approximately 1 microg g(-1) greater than males.  相似文献   
332.
Commercially available adsorption cooling systems use water/silica gel, water/zeolite and ammonia/ chloride salts working pairs. The water-based pairs are limited to work above 0°C due to the water high freezing temperature, while ammonia has the disadvantage of being toxic. Ethanol is a promising refrigerant due to its low freezing point (161 K), nontoxicity, zero ozone depletion, and low global warming potential. Activated carbon (AC) is a porous material with high degree of porosity (500–3000 m2/g) that has been used in wide range of applications. Using Dynamic Vapour Sorption (DVS) test facility, this work characterizes the ethanol adsorption of eleven commercially available activated carbon materials for cooling at low temperature of ?15°C. DVS adsorption results show that Maxsorb has the best performance in terms of ethanol uptake and adsorption kinetics compared to the other tested materials. The Maxsorb/ethanol adsorption process has been numerically modeled using computational fluid dynamics (CFD) and simulation results are validated using the DVS experimental measurements. The validated CFD simulation of the adsorption process is used to predict the effects of adsorbent layer thickness and packing density on cycle uptake for evaporating temperature of ?15°C. Simulation results show that as the thickness of the Maxsorb adsorbent layer increases, its uptake decreases. As for the packing density, the amount of ethanol adsorbed per plate increases with the packing density reaching maximum at 750 kg/m3. This work shows the potential of using Maxsorb/ethanol in producing low temperature cooling down to ?15°C with specific cooling energy reaching 400 kJ/kg.  相似文献   
333.
Environmental Science and Pollution Research - Energy is an essential parameter for the economic growth and sustainable development of any country. Due to the rapid increase in energy demand,...  相似文献   
334.
Deinking paper sludge (DPS)/high density polyethylene (HDPE) composites with and without coupling agent (3 % of maleated polyethylene (MAPE)) were manufactured by twin-screw extrusion followed by injection molding with high percentages of DPS (0, 20, 30 and 40 %). The effects of DPS content and MAPE on the mechanical, thermal, and morphological properties of the DPS/HDPE composites were investigated. Increasing DPS content in composites increased the tensile and flexural modulus (E; MOE), tensile and flexural strength (Rm; MOR), while decreased elongation at break and Un-notched impact resistance due to a poor adhesion between the DPS and HDPE. The addition of DPS also improved the thermal stability and increased the composites crystallinity. High content of DPS (40 %) and 3 % MAPE achieved good interfacial adhesion between fibres of DPS and HDPE. Therefore, an increase is observed for Rm, MOR, ductility, and impact toughness.  相似文献   
335.
336.
337.
338.
A mathematical model has been developed to study the thermal and chemical processes occurring In a municipal solid waste mass combustor. Treating the solids feed as a mixture of pseudo-components, the model determines the Interrelationships between the solids feed rate, grate travel rate and length, amounts and distributions of primary and secondary air, extent of solids burn out, and the bed and flame temperatures. The model Incorporates the kinetics of pyrolysis of solids and simulates heat and mass transfer within the bed.

The temperature and mass flow profiles generated show that much of the grate Is taken up by the heatup and burnout zones. The heatup zone can be reduced by distributing the primary air to maintain minimal air flow In that region, thereby permitting rapid heatup. Increasing the solids feed rate and adjusting the air flow distributions can reduce the length of the burnout zone. The computer program, available on both PCs and mainframe, can be used for different MSW Incinerator dimensions and feed parameters to Investigate the effects of the control variables and optimize the desired output characteristics, e.g., maximize solids throughput.  相似文献   
339.
Environmental Chemistry Letters - Yogurt is a major fermented milk product providing probiotics, lactic acid bacteria, vitamins, calcium, and proteins, yet health-beneficial phenolics, flavonoids,...  相似文献   
340.

Access to drinkable water is becoming more and more challenging due to worldwide pollution and the cost of water treatments. Water and wastewater treatment by adsorption on solid materials is usually cheap and effective in removing contaminants, yet classical adsorbents are not sustainable because they are derived from fossil fuels, and they can induce secondary pollution. Therefore, biological sorbents made of modern biomass are increasingly studied as promising alternatives. Indeed, such biosorbents utilize biological waste that would otherwise pollute water systems, and they promote the circular economy. Here we review biosorbents, magnetic sorbents, and other cost-effective sorbents with emphasis on preparation methods, adsorbents types, adsorption mechanisms, and regeneration of spent adsorbents. Biosorbents are prepared from a wide range of materials, including wood, bacteria, algae, herbaceous materials, agricultural waste, and animal waste. Commonly removed contaminants comprise dyes, heavy metals, radionuclides, pharmaceuticals, and personal care products. Preparation methods include coprecipitation, thermal decomposition, microwave irradiation, chemical reduction, micro-emulsion, and arc discharge. Adsorbents can be classified into activated carbon, biochar, lignocellulosic waste, clays, zeolites, peat, and humic soils. We detail adsorption isotherms and kinetics. Regeneration methods comprise thermal and chemical regeneration and supercritical fluid desorption. We also discuss exhausted adsorbent management and disposal. We found that agro-waste biosorbents can remove up to 68–100% of dyes, while wooden, herbaceous, bacterial, and marine-based biosorbents can remove up to 55–99% of heavy metals. Animal waste-based biosorbents can remove 1–99% of heavy metals. The average removal efficiency of modified biosorbents is around 90–95%, but some treatments, such as cross-linked beads, may negatively affect their efficiency.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号