首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   767篇
  免费   1篇
  国内免费   30篇
安全科学   14篇
废物处理   56篇
环保管理   56篇
综合类   89篇
基础理论   129篇
污染及防治   314篇
评价与监测   91篇
社会与环境   41篇
灾害及防治   8篇
  2023年   51篇
  2022年   107篇
  2021年   99篇
  2020年   25篇
  2019年   30篇
  2018年   36篇
  2017年   31篇
  2016年   41篇
  2015年   20篇
  2014年   35篇
  2013年   71篇
  2012年   23篇
  2011年   29篇
  2010年   24篇
  2009年   13篇
  2008年   25篇
  2007年   22篇
  2006年   18篇
  2005年   16篇
  2004年   12篇
  2003年   7篇
  2002年   5篇
  2001年   4篇
  2000年   9篇
  1999年   2篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1984年   2篇
  1983年   5篇
  1982年   5篇
  1981年   2篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1970年   1篇
  1969年   1篇
  1967年   1篇
  1966年   1篇
  1964年   2篇
排序方式: 共有798条查询结果,搜索用时 672 毫秒
621.
Environmental Science and Pollution Research - Numerous studies have focused on the response of meiofauna after exposure to polycyclic aromatic hydrocarbons (PAHs), but none has been devoted to...  相似文献   
622.
Environmental Science and Pollution Research - The current study aimed to investigate the protective effect of corn silk methanolic extract (CSME) against acetaminophen (APAP)-induced...  相似文献   
623.
Understanding the ecological status of aquatic ecosystems and the impact of anthropogenic contamination requires correlating exposure to toxicants with impact on biological communities. Several tools exist for assessing the ecotoxicity of substances, but there is still a need for new tools that are ecologically relevant and easy to use. We have developed a protocol based on the substrate-induced respiration of a river biofilm community, using the MicroResp™ technique, in a pollution-induced community tolerance approach. The results show that MicroResp™ can be used in bioassays to assess the toxicity toward biofilm communities of a wide range of metals (Cu, Zn, Cd, Ag, Ni, Fe, Co, Al and As). Moreover, a community-level physiological profile based on the mineralization of different carbon substrates was established. Finally, the utility of MicroResp™ was confirmed in an in-situ study showing gradient of tolerance to copper correlated to a contamination gradient of this metal in a small river.  相似文献   
624.
The plasma–chemical degradation of Forafac 1110, a perfluorinated non-ionic surfactant, in aqueous solutions was investigated using TiO2 catalysts. The considered plasma was the gliding arc in humid air, which results from an electric discharge at atmospheric pressure and quasi-ambient temperature. Two titanium dioxide powders were used and their synergistic effects on the Forafac degradation were compared. The results were discussed through the evolution of the pH, the conductivity, the fluoride ions concentration released in solutions, the surfactant concentration remaining after treatment and the chemical oxygen demand (COD) measurement.

The combination of the plasma–chemical treatment with heterogeneous catalysis through the use of TiO2 accelerated the Forafac degradation, since only 60 min was sufficient to remove 96% instead of 360 min needed in the absence of TiO2. The use of anatase and rutile under the trade-name of Rhodia TiO2 and Merck TiO2, respectively, led to different results, because Rhodia TiO2 has proven to be more efficient. It would seem that the crystalline phase as well as the crystallite size, explain the efficiency of anatase. The advantage of the plasma-catalysis is due to the fact that there is a significant production of the OH radicals not only generated by the gliding arc discharge but also by TiO2.  相似文献   

625.
626.
This paper addresses the requirements of electrical energy for an isolated island of Masirah in Oman. The paper studied the possibility of using sources of renewable energy in combination with current diesel power plant on the island to meet the electrical load demand. There are two renewable energy sources used in this study, solar and wind energy. This study aimed to design and evaluate hybrid solar/wind/diesel/battery system in terms of cost and pollution. By using HOMER software, many simulation analyses have been proposed to find and optimize different technologies that contain wind turbine, solar photovoltaic, and diesel in combination with storage batteries for electrical generation. Four different hybrid power systems were proposed, diesel generators only, wind/diesel/battery, PV/diesel/battery, and PV/wind/diesel/battery. The analysis of the results shows that around 75 % could reduce the cost of energy by using PV/wind/diesel hybrid power system. Also, the greenhouse emission could be reduced by around 25 % compared with these by using diesel generators system that currently utilize in the Masirah Island. The solar/wind/diesel hybrid system is techno-economically viable for Masirah Island.  相似文献   
627.
The multiwall carbon nanotubes (MWCNTs) were modified by 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) via grafting reaction and γ-rays of 60Co source was used as initiator. The outcome product was called hydroxyethylated (HOEt-MWCNTs) graft poly(AMPS) and abbreviated as HOEt-MWCNTs-g-PAMPS. The parameters that affected the grafting yield were optimized. The maximum grafting obtained was ~20 %. HOEt-MWCNTs-g-PAMPS were characterized by Fourier transform infra red, scanning electron microscopy, high resolution transmission electron microscopy, thermal gravimetric analysis. The adsorptive removals of malachite green chloride (MGC) and reactive red 198 (RR-198) onto HOEt-MWCNTs-g-PAMPS were studied at variable conditions. The adsorption isotherms were analyzed using Langmuir, Redlich–Peterson, Freundlich, Khan and Sips models. The results referred that Sips model is the best fitting to adsorption of MGC and Freundlich model is the best fitting to RR-198 adsorption. The monolayer coverage capacities of HOEt-MWCNTs-g-PAMPS for MGC and RR-198 dyes were found 172 and 323 mg g?1, respectively. The rate of kinetic adsorption processes of MGC and RR-198 onto HOEt-MWCNTs-g-PAMPS were described by using pseudo-first order, pseudo-second order and intraparticle diffusion models. The pseudo-first order and pseudo-second order models were the best choice among the kinetic models to depict the adsorption behaviors of MGC and RR-198 dyes onto HOEt-MWCNTs-g-PAMPS, respectively. Further, the effect of temperature on the adsorption isotherms was investigated and the thermodynamic parameters were obtained. The results indicated that the adsorption process is spontaneous and endothermic. The values of ΔG° varied in range with the mean values showing a gradual increase from ?3.17 to ?3.64 kJ mol?1 for MGC and ?3.36 to ?3.73 kJ mol?1 for RR-198. The reusability and regeneration of adsorbent were investigated. The outcome data referred to that the efficiency of adsorbent >98 %. The outline results declared that there is a good potentiality for the HOEt-MWCNTs-g-PAMPS to be used as an adsorbent for the removal of MGC and RR-198 from aqueous solutions.  相似文献   
628.
Environmental Science and Pollution Research - Thyroid hormones play a fundamental role in the regulation of metabolism of almost all mammalian tissue including the reproductive system....  相似文献   
629.
A verity of human activities i.e. urbanization and industrialization have been resulted serious environmental contaminations by heavy metals in all over the world. The settlement of populations in urban and nearby industrial areas for economic development has significant share in their exposure to these metallic contaminants. Depending on the nature and type of the pollutants, targeted urban-industrial environments can have harmful and chronic health risk impacts on exposed local inhabitants and may require detoxification, healing and remedial therapy. Consequently, environmental monitoring as well as human health risk assessments of urban environments under industrial influence are key dominant features. We believe this work will provide new insights into the studies of metals exposure and associated health risks in emerging industrials cities of developing countries. Present study aimed to study the bioavailability of metals, quantify the changeability in soil and vegetable metal concentrations and estimation of human health risks via dietary exposure, focusing on urban-industrial environment. Soil and vegetable samples were collected in six random sites within the urban, periurban and industrial areas and analyzed for metal concentrations. In addition, risk assessment model proposed by US-EPA was employed to estimate the potential health risk of heavy metals via dietary intake. Results indicated that the heavy metal concentrations were noteworthy in periurban and urban-industrial areas. However, contamination levels varied with the type of vegetable, and the point source pollution such as traffic, urban wastes and industrial effluent. According to the estimated THQ and HI values for non-carcinogenic risk, little or no negative impact of heavy metals was observed on local inhabitants. However, the concentrations of Cr, Cd, Pb and Ni were nearly closed to the permissible limits described by US-EPA in urban-industrial areas. Conclusively, some efficient remedial strategies should be focus to overcome the increasing levels of Cr, Cd, Pb and Ni in this study area to protect the health of local inhabitants.  相似文献   
630.
Pesticides are used for controlling the development of various pests in agricultural crops worldwide. Despite their agricultural benefits, pesticides are often considered a serious threat to the environment because of their persistent nature and the anomalies they create. Hence removal of such pesticides from the environment is a topic of interest for the researchers nowadays. During the recent years, use of biological resources to degrade or remove pesticides has emerged as a powerful tool for their in situ degradation and remediation. Fungi are among such bioresources that have been widely characterized and applied for biodegradation and bioremediation of pesticides. This review article presents the perspectives of using fungi for biodegradation and bioremediation of pesticides in liquid and soil media. This review clearly indicates that fungal isolates are an effective bioresource to degrade different pesticides including lindane, methamidophos, endosulfan, chlorpyrifos, atrazine, cypermethrin, dieldrin, methyl parathion, heptachlor, etc. However, rate of fungal degradation of pesticides depends on soil moisture content, nutrient availability, pH, temperature, oxygen level, etc. Fungal strains were found to harbor different processes including hydroxylation, demethylation, dechlorination, dioxygenation, esterification, dehydrochlorination, oxidation, etc during the biodegradation of different pesticides having varying functional groups. Moreover, the biodegradation of different pesticides was found to be mediated by involvement of different enzymes including laccase, hydrolase, peroxidase, esterase, dehydrogenase, manganese peroxidase, lignin peroxidase, etc. The recent advances in understanding the fungal biodegradation of pesticides focusing on the processes, pathways, genes/enzymes and factors affecting the biodegradation have also been presented in this review article.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号