首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27493篇
  免费   179篇
  国内免费   146篇
安全科学   475篇
废物处理   1462篇
环保管理   3660篇
综合类   3667篇
基础理论   7938篇
环境理论   5篇
污染及防治   6148篇
评价与监测   2080篇
社会与环境   2274篇
灾害及防治   109篇
  2022年   117篇
  2021年   141篇
  2020年   114篇
  2019年   158篇
  2018年   1757篇
  2017年   1667篇
  2016年   1572篇
  2015年   379篇
  2014年   384篇
  2013年   1350篇
  2012年   944篇
  2011年   2047篇
  2010年   1357篇
  2009年   1198篇
  2008年   1686篇
  2007年   2065篇
  2006年   687篇
  2005年   601篇
  2004年   643篇
  2003年   690篇
  2002年   676篇
  2001年   730篇
  2000年   499篇
  1999年   292篇
  1998年   270篇
  1997年   225篇
  1996年   238篇
  1995年   256篇
  1994年   283篇
  1993年   231篇
  1992年   251篇
  1991年   233篇
  1990年   265篇
  1989年   244篇
  1988年   201篇
  1987年   179篇
  1986年   166篇
  1985年   179篇
  1984年   215篇
  1983年   201篇
  1982年   198篇
  1981年   189篇
  1980年   147篇
  1979年   163篇
  1978年   139篇
  1977年   121篇
  1975年   119篇
  1974年   121篇
  1973年   112篇
  1972年   135篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
931.
Microbial polyhydroxyalkonate such as homopolyester of poly(3-hydroxybutyrate) (PHB) was produced from cheese whey by Bacillus megaterium NCIM 5472. Due to their numerous potential industrial applications, the focus was given to competently enhance the amount of PHB produced. The amount of PHB produced from whole cheese whey, and ultrafiltered cheese whey was first compared, and after observing a rise in PHB production by using ultrafiltered cheese whey, cheese whey permeate was chosen for further analysis. The presence of PHB was then confirmed by GCMS. Since the main aim of the study was to increase the amount of PHB produced through batch fermentation, various process parameters like time, pH, C/N ratio, etc. were optimized. After optimization, it was found that B. megaterium NCIM 5472 was capable of accumulating 75.5% of PHB of its dry weight and a PHB yield of 8.29 g/L. The chemical structure of the polymer was further analyzed by using FTIR and NMR spectroscopy methods. Also, the physical and thermal properties were studied by using Differential scanning calorimetry and Thermogravimetric analysis. It was found that the polymer produced had excellent thermal stability, thus allowing the possibility to exploit its properties for industrial purposes such as adhesives, packaging materials, etc.  相似文献   
932.
933.
Although hemicellulose is found widely in nature, it is currently under-utilized as a raw material for commercial applications. It would be desirable to find new uses for hemicellulose in order to add value to this agro-based material. A common type of hemicellulose is xylan, which is found in a number of wood species and in cotton. In this work we prepared cationic and anionic xylan derivatives and characterized them by 13C NMR, FT-IR, size exclusion chromatography (SEC), thermal analysis, and rheology. In particular, the 13C NMR spectra of carboxymethyl xylan (CMX) and quaternary ammonium-adducted xylan (QAX) were fully assigned with the help of samples with different degrees of substitution. SEC indicated that the beechwood xylan showed a bimodal molecular weight distribution, but with derivatization the distribution tended to become unimodal. Thermal analysis and rheology studies did not uncover any surprises; the solution of xylan and its derivatives exhibited mostly Newtonian behavior. The blends of CMX and QAX produced a precipitate at almost all ratios, indicating the formation of a polyelectrolyte complex. When cationic and anionic xylan samples were added together to paper, the paper dry strength increased. Thus, the combination of cationic/anionic xylan may be of interest in selected applications.  相似文献   
934.
The aim of the present study is to investigate mechanical and morphological properties of pineapple leaf fibres (PALF) reinforced phenolic composites and its comparison with kenaf fibre (KF)/phenolic composites. Mechanical properties (tensile, flexural and impact) of untreated and treated PALF phenolic composites at different fibre loading were investigated. Tensile, flexural and impact properties of PALF and kenaf/phenolic composites were analyzed as per ASTM standard. Morphological analysis of tensile fracture samples of composites was carried out by scanning electron microscopy. Obtained results indicated that treated PALF/phenolic composites at 50% PALF loading exhibited better tensile, flexural and impact properties as compared to other untreated PALF/phenolic composites. Treated kenaf/phenolic composites at 50% fibre loading showed better tensile, flexural and impact properties than untreated kenaf/phenolic composite. It is concluded that treated 50% fibre loading kenaf and PALF/phenolic composites showed better mechanical properties than untreated kenaf and PALF/phenolic composites due to good fibre/matrix interfacial bonding. Results obtained in this study will be used for the further study on hybridization of PALF and KF based phenolic composites.  相似文献   
935.
The manufacturing industry produces a lot of different by-products and waste. In this research, the utilization of different industrial wastes as a part of wood-plastic composites was tested. Limestone waste and carton cutting waste were tested by replacing part of the reinforcing fibers of the composite with these materials. The materials were made with the extrusion process, and they were tested for their mechanical properties, water absorption and thickness swelling. The materials were also viewed with a scanning electron microscope. The results showed that both industrial wastes affected the properties of the composite. Mining waste in the composite improved the moisture properties, impact strength and hardness of the material. Carton cutting waste improved the impact strength remarkably.  相似文献   
936.
The potential use of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/graphite nanosheets (GNS) as a biodegradable nanocomposite has been explored. PHBV/GNS nanocomposites films were prepared by solution casting at various concentrations of GNS—0.25, 0.50 and 1.00 wt% GNS. The films were exposed to artificial ultraviolet radiation (UV) during 52 h. The effect of GNS on PHBV photodegradation was investigated and compared to neat PHBV film. The artificial photodegradation induced changes in physical (weight loss), chemical carbonyl index by Fourier transform infrared spectroscopy, thermal degree of crystallinity and melting temperature by differential scanning calorimetry and morphological scanning electron microscopy characteristics. Based on the results obtained from aforementioned analyzes it was verified that GNS inhibits the oxidative degradation of PHBV matrix.  相似文献   
937.
The demand for biodegradable plastic material is increasing worldwide. However, the cost remains high in comparison with common forms of plastic. Requirements comprise low cost, good UV-stability and mechanical properties, as well as solubility and water uptake lead to the preparation of multi-component polymer blends based on polyvinyl alcohol and starch in combination with waste products that are hard to utilize—waste lignin and hydrolysate extracted from chromium tanned waste. Surprisingly the addition of such waste products into PVA gives rise to blends with better biodegradability than commercial PVA in an aquatic aerobic environment with non-adapted activated sludge. These blends also exhibited greater solubility in the water and UV stability than commercial PVA. Tests on the processing properties of the blends (melt flow index, tensile strength and elongation at break of the films) as well as their mechanical properties showed that materials based on these blends might be applied in agriculture (for example as the systems for controlled-release pesticide or fertilizer) and, somewhat, in the packaging sector.  相似文献   
938.
Fungal based biopolymer matrix composites with lignocellulosic agricultural waste as the filler are a viable alternative for some applications of synthetic polymers. This research provides insight into the impact of the processing method and composition of agriwaste/fungal biopolymer composites on structure and mechanical properties. The impact of nutrition during inoculation and after a homogenization step on the three-point bend flexural modulus and strength was determined. Increasing supplemental nutrition at inoculation had little effect on the overall composite strength or modulus; however, increasing carbohydrate loading after a homogenization step increased flexural stress at yield and bulk flexural modulus. The contiguity of the network formed was notably higher in the latter scenario, suggesting that the increase in modulus and strength of the final composite after homogenization was the result of contiguous hyphal network formation, which improves the integrity of the matrix and the ability to transfer load to the filler particles.  相似文献   
939.
The aims of this work were to produce trays based on cassava starch, coated with polyvinyl alcohol (PVA) with a higher degree of hydrolysis (98%), and to study the effects of the coating on the mechanical and water sorption properties of the trays. Two types of PVA were tested: SELVOL? 325 (degree of polymerization?=?1000–1500) and SELVOL? 107 (degree of polymerization?=?350–650). A decrease in the water absorption capacity of 50% was observed when the coated samples were compared with the control sample after 30 min of immersion in water. It was observed in both coated samples a reduction of the initial rate of water adsorption sorption and a decrease in hydrophilicity compared with the control sample. Tensile strength and elongation were increased with application of the coatings. The use of the two types of PVA resulted in materials with similar mechanical and water sorption properties.  相似文献   
940.
Gelatin-Zr(IV) phosphate composite (GT/ZPC) was synthesized by sol–gel method. Different techniques viz. Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray powdered diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used for the characterisation of GT/ZPC composite ion exchanger. The ion exchange capacity (IEC) of GT/ZPC was observed to be better (1.04 meq g?1) than its inorganic counterpart (0.64 meq g?1). The pH studies revealed the monofunctional nature of GT/ZPC with one inflection point. The distribution studies showed that the GT/ZPC was highly selective for Cd2+ as compare to other metal ions. The environmental applicability of ion exchanger has been analysed for binary separations of metal ions using column method. Cd2+ was effectively removed from synthetic mixture of metal ions (Zn2+, Pb2+, Ni2+, Co2+ and Cu2+).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号