首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27493篇
  免费   179篇
  国内免费   146篇
安全科学   475篇
废物处理   1462篇
环保管理   3660篇
综合类   3667篇
基础理论   7938篇
环境理论   5篇
污染及防治   6148篇
评价与监测   2080篇
社会与环境   2274篇
灾害及防治   109篇
  2022年   117篇
  2021年   141篇
  2020年   114篇
  2019年   158篇
  2018年   1757篇
  2017年   1667篇
  2016年   1572篇
  2015年   379篇
  2014年   384篇
  2013年   1350篇
  2012年   944篇
  2011年   2047篇
  2010年   1357篇
  2009年   1198篇
  2008年   1686篇
  2007年   2065篇
  2006年   687篇
  2005年   601篇
  2004年   643篇
  2003年   690篇
  2002年   676篇
  2001年   730篇
  2000年   499篇
  1999年   292篇
  1998年   270篇
  1997年   225篇
  1996年   238篇
  1995年   256篇
  1994年   283篇
  1993年   231篇
  1992年   251篇
  1991年   233篇
  1990年   265篇
  1989年   244篇
  1988年   201篇
  1987年   179篇
  1986年   166篇
  1985年   179篇
  1984年   215篇
  1983年   201篇
  1982年   198篇
  1981年   189篇
  1980年   147篇
  1979年   163篇
  1978年   139篇
  1977年   121篇
  1975年   119篇
  1974年   121篇
  1973年   112篇
  1972年   135篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
It has become increasingly apparent that global manganese (Mn) pollution to air and water is a significant threat to human health. Despite this recognition, research is only beginning to comprehend the detrimental effects of exposure. Mn, while essential, is particularly harmful to the central nervous system, and overexposure is symptomatic of several neurological disorders. At-risk populations have been identified, but it is still unclear whether typical exposure levels have any long-term consequences. Those at an elevated risk have diminished intellectual function, learning and memory, and mental development. While the overall mechanism of toxicity is undetermined, Mn has been found to induce oxidative stress, exacerbate mitochondrial dysfunction, dysregulate autophagy, and promote apoptosis, ultimately enhancing neurodegeneration. Extrapolation of this in vitro and in vivo data to humans is difficult. There is a definite need to correlate epidemiological studies with causative effects. It is imperative that research efforts endure, so threats are appropriately identified and exposure properly regulated.  相似文献   
972.
A simple online headspace solid-phase microextraction (HS-SPME) coupled with the gas chromatography-mass spectrometry (GC-MS) method was developed for simultaneous determination of trace amounts of nine estrogenic odorant alkylphenols and chlorophenols and their derivatives in water samples. The extraction conditions of HS-SPME were optimized including fiber selection, extraction temperature, extraction time, and salt concentration. Results showed that divinylbenzene/Carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber was the most appropriate one among the three selected commercial fibers, and the optimal extraction temperature, time, and salt concentration were 70 °C, 30 min, and 0.25 g/mL, respectively. The developed method was validated and showed good linearity (R 2?>?0.989), low limit of detection (LOD, 0.002–0.5 μg/L), and excellent recoveries (76–126 %) with low relative standard deviation (RSD, 0.7–12.9 %). The developed method was finally applied to two surface water samples and some of these target compounds were detected. All these detected compounds were below their odor thresholds, except for 2,4,6-TCAS and 2,4,6-TBAS wherein their concentrations were near their odor thresholds. However, in the two surface water samples, these detected compounds contributed to a certain amount of estrogenicity, which seemed to suggest that more attention should be paid to the issue of estrogenicity rather than to the odor problem.  相似文献   
973.
A novel approach for the electrospinning and functionalization of nanocatalyst-loaded polyvinylidene fluoride/polyacrylonitrile (PVDF/PAN) composite grafted with acrylic acid (AA; which form polyacrylic acid (PAA) brush) and decorated with silver (Ag/PAN/PVDF-g-PAA-TiO2/Fe–Pd) designed for the dechlorination and photodegradation of pesticides was carried out. PAN was used both as a nitrogen dopant as well as a co-polymer. Smooth nanofibers were obtained by electrospinning a solution of 12:2 wt.% PVDF/PAN blend using dimethylformamide (DMF) as solvent. The nanofibers were grafted with AA by free-radical polymerization using 2,2′azobis(2-methylpropionitrile) (AIBN) as initiator. Both bimetallic iron–palladium (Fe–Pd) and titania (TiO2) nanoparticles (NP) were anchored on the grafted nanofibers via the carboxylate groups by in situ and ex situ synthesis. The Fe–Pd and nitrogen-doped TiO2 nanoparticles were subsequently used for dechlorination and oxidation of target pollutants (dieldrin, chlorpyrifos, diuron, and fipronil) to benign products. Structural and chemical characterizations of the composites were done using various techniques. These include surface area and porosity analyzer (ASAP) using the technique by Brunner Emmett Teller (BET), Fourier transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscope (TEM) analyses were done. After dechlorination, the transformation products (TPs) for dieldrin, chlorpyrifos, diuron, and fipronil were obtained and identified using two-dimensional gas chromatography (time-of-flight) with a mass spectrometer detector (GCxGC-TOFMS). Analysis of total organic carbon (TOC) was carried out and used to extrapolate percentage mineralization. Experimental results showed that dechlorination efficiencies of 96, 93, 96, and 90 % for 1, 2, 2, and 3 h treatment period were respectively achieved for 5 ppm solutions of dieldrin, chlorpyrifos, diuron, and fipronil. The dechlorination of dieldrin, diuron, and fipronil follows first-order kinetics while that of chlorpyrifos followed pseudo-first order. Mineralization performance of 34 to 45 % were recorded when Fe–Pd was used, however upon electrospinning, doping, and grafting (Ag/PAN/PVDF-g-PAA-TiO2/Fe–Pd composite); it significantly increased to 99.9999 %. This composite reveals great potential for dechlorination and mineralization of pesticides in contaminated water.  相似文献   
974.
975.
Laser-induced breakdown spectroscopy (LIBS) is a laser-based optical technique particularly suited for in situ surface analysis. A portable LIBS instrument was tested to detect surface chemical contamination by chemical warfare agents (CWAs). Test of detection of surface contamination was carried out in a toxlab facility with four CWAs, sarin (GB), lewisite (L1), mustard gas (HD), and VX, which were deposited on different substrates, wood, concrete, military green paint, gloves, and ceramic. The CWAs were detected by means of the detection of atomic markers (As, P, F, Cl, and S). The LIBS instrument can give a direct response in terms of detection thanks to an integrated interface for non-expert users or so called end-users. We have evaluated the capability of automatic detection of the selected CWAs. The sensitivity of our portable LIBS instrument was confirmed for the detection of a CWA at surface concentrations above 15 μg/cm2. The simultaneous detection of two markers may lead to a decrease of the number of false positive.  相似文献   
976.
During the past decade, there has been increasing global concern over the rise of anthropogenic CO2 emission into the Earth’s atmosphere (J Air Waste Manage Assoc 53:645–715, 2003). The utilization of CO2 to produce any valuable product is need of the hour. The production of syngas from CO2 and CH4 seems to be one of the promising alternatives in terms of industrial utilization, as it offers several advantages: (a) mitigation of CO2, (b) transformation of natural gas and CO2 into valuable syngas, and (c) producing syngas with H2/CO ratio 1 which may further be used for the production of valuable petrochemicals (J Air Waste Manage Assoc 53:645–715, 2003). A conceptual design for the production of synthesis gas by dry reforming of methane is presented here. An economic assessment of this process with an integrated methanol production section as a case was conceptualized and compared with the conventional steam methane reforming route to produce methanol. The economic study indicated that dry reforming of natural gas/methane is a competitive process with lower operating and capital costs in comparison with steam reforming assuming negligible cost of CO2 import.  相似文献   
977.

Silicon-based fertilizers and soil amendments can have direct and indirect positive influences on cultivated plants. The solid forms of Si-based substances, the most widespread in use, are efficient only at high application rates due to their low level of solubility. Several types of Si-based substances such as fumed silica, slags from the iron and steel industry, modified slags, and a Si-rich product were tested using barley and pea as silicon accumulative and non-accumulative plants, respectively, at two application rates. The plants were grown under toxic concentrations of heavy metals in a greenhouse. Si-rich materials high in water-soluble Si had a positive effect at both the low and high application rates, and for both plant species. This type of substance can be regarded as Si fertilizer, demonstrating greater efficiency at a low application rate and lessened efficiency at a high application rate for protection of the cultivated plants against accumulation of the heavy metals.

  相似文献   
978.
The chloroform is a substance that presents a significant risk to or via the aquatic environment. Thus, the emissions, discharges and losses of this substance need to be controlled during wastewater disinfection for reclamation and reuse purposes. Due to its carcinogenetic potential, multiple studies have been carried out on drinking and surface/natural waters but less consideration has been directed to the wastewater disinfection. The focus of this work studied the formation of chloroform during chlorination in prepared waters or artificial matrices that intended to simulate wastewaters stored in landscape ponds for green areas irrigation. The relation between reaction time, chlorine dose, and chloroform formation and the variation of the dissolved organic carbon (DOC) content during the reaction was assessed. A two-variant model was proposed to simulate breakpoint chlorination practices (when chlorine dose is equal or lower than chlorine demand) and super chlorination techniques (when chlorine dose tends to surpass chlorine demand). The model was validated by the application of actual data from working conditions of six wastewater treatment plants located in Algarve, Portugal, including other data obtained in previous research studies that were not used in the model development, and by comparing the predicted values with real measured ones.  相似文献   
979.
With the rapid development of urbanization and industrialization, many developing countries are suffering from heavy air pollution. Governments and citizens have expressed increasing concern regarding air pollution because it affects human health and sustainable development worldwide. Current air quality prediction methods mainly use shallow models; however, these methods produce unsatisfactory results, which inspired us to investigate methods of predicting air quality based on deep architecture models. In this paper, a novel spatiotemporal deep learning (STDL)-based air quality prediction method that inherently considers spatial and temporal correlations is proposed. A stacked autoencoder (SAE) model is used to extract inherent air quality features, and it is trained in a greedy layer-wise manner. Compared with traditional time series prediction models, our model can predict the air quality of all stations simultaneously and shows the temporal stability in all seasons. Moreover, a comparison with the spatiotemporal artificial neural network (STANN), auto regression moving average (ARMA), and support vector regression (SVR) models demonstrates that the proposed method of performing air quality predictions has a superior performance.  相似文献   
980.
Cadmium (Cd) has known to produce many adverse effects on organs including placenta. Many essential transporters are involved in Cd transport pathways such as DMT-1, ZIP as well as L-VDCC. Fourteen pregnant women participated and were divided into two groups: high and low Cd-exposed (H-Cd, L-Cd) groups on the basis of their residential areas, Cd concentrations in the blood (B-Cd), urine (U-Cd), and placenta (P-Cd). The results showed that the B-Cd and U-Cd were significantly increased in H-Cd group (p < 0.05). Interestingly, the P-Cd in H-Cd group was elevated (p < 0.05) and positively related to their B-Cd and U-Cd values (p < 0.05). However, the mean cord blood Cd (C-Cd) concentration in H-Cd group was not significantly increased about 2.5-fold when comparing to L-Cd group. To determine the Cd accumulation in placental tissues, metallothionein-1A (MT-1A) and metallothionein-2A (MT-2A) expressions were used as biomarkers. The results revealed that mean MT-1A and MT-2A mRNAs and MT-1/2 proteins were up-regulated in H-Cd group (p < 0.05). In addition, the Ca channel alpha 1C (CACNA1C) mRNA and protein expressions were noticeably elevated in H-Cd group (p < 0.05). From these findings, we suggested that CACNA1C might be implicated in Cd transport in human placenta.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号