首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   741篇
  免费   0篇
  国内免费   40篇
安全科学   55篇
废物处理   54篇
环保管理   60篇
综合类   68篇
基础理论   91篇
环境理论   1篇
污染及防治   317篇
评价与监测   92篇
社会与环境   39篇
灾害及防治   4篇
  2023年   22篇
  2022年   79篇
  2021年   74篇
  2020年   18篇
  2019年   27篇
  2018年   17篇
  2017年   32篇
  2016年   25篇
  2015年   12篇
  2014年   21篇
  2013年   73篇
  2012年   35篇
  2011年   46篇
  2010年   31篇
  2009年   28篇
  2008年   26篇
  2007年   31篇
  2006年   17篇
  2005年   13篇
  2004年   11篇
  2003年   16篇
  2002年   16篇
  2001年   16篇
  2000年   9篇
  1999年   8篇
  1998年   3篇
  1997年   7篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   4篇
  1992年   2篇
  1991年   6篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1987年   4篇
  1986年   2篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1980年   4篇
  1979年   4篇
  1978年   2篇
  1976年   2篇
  1962年   1篇
  1961年   1篇
  1959年   1篇
排序方式: 共有781条查询结果,搜索用时 15 毫秒
241.
Environmental Science and Pollution Research - Electrocoagulation (EC) is one of the emerging technologies in groundwater and wastewater treatment as it combines the benefits of coagulation,...  相似文献   
242.
Environmental Science and Pollution Research - To understand the nexus between economic growth and energy sources, in this study, we have selected Pakistan and collected data over the period...  相似文献   
243.
Environmental Science and Pollution Research - In developing countries like Pakistan, agriculture constitutes the primary source of support for the majority of rural and the adjacent urban...  相似文献   
244.
Environmental Science and Pollution Research - Organic dyes that are extensively released in wastewater from various industries remain the priority concern in the modern world. Therefore, a novel...  相似文献   
245.
Zero-valent iron amended biochar (ZVIB) has been proposed as a promising material in immobilizing heavy metals in paddy fields. In this study, the impacts of pH of ZVIB (pH 6.3 and pH 9.7) and watering management techniques (watering amount in the order of CON (control, 5/72)>3/72>1–3/72>3/100>1/72, with 5/72, for example, representing irrigation given to 5 cm above soil surface in 72 hr regular interval) on As and Cd bioavailability for rice and its grain yield (YieldBR) were investigated in a pot experiment. Brown rice As (AsBR) content was irrelative to the watering treatments, while significantly decreased (>50%) with the addition of both ZVIB materials. The diminutions of brown rice Cd (CdBR) content as well as the YieldBR were highly dependent on both the soil amendment materials’ pH and watering amount. Among all the watering treatments, 3/72 treatment (15% less irrigation water than the CON) with ZVIB 6.3 amendment was the optimum fit for simultaneous reduction of AsBR (50%) and CdBR contents (19%) as well as for significant increment (12%) of the YieldBR. Although high pH (9.7) ZVIB application could also efficiently decrease As and Cd contents in brown rice, it might risk grain yield lost if appropriate (e.g. 3/72 in our study) watering management technique was not chosen. Therefore, ZVIB would be an environmentally friendly option as an amendment material with proper selection of watering management technique to utilize As and Cd co-contaminated arable soils safely for paddy cultivation.  相似文献   
246.
The submicron particulate matter (PM1) and fine particulate matter (PM2.5) are very important due to their greater adverse impacts on the natural environment and human health. In this study, the daily PM1 and PM2.5 samples were collected during early summer 2018 at a sub-urban site in the urban-industrial port city of Tianjin, China. The collected samples were analyzed for the carbonaceous fractions, inorganic ions, elemental species, and specific marker sugar species. The chemical characterization of PM1 and PM2.5 was based on their concentrations, compositions, and characteristic ratios (PM1/PM2.5, AE/CE, NO3?/SO42?, OC/EC, SOC/OC, OM/TCA, K+/EC, levoglucosan/K+, V/Cu, and V/Ni). The average concentrations of PM1 and PM2.5 were 32.4 µg/m3 and 53.3 µg/m3, and PM1 constituted 63% of PM2.5 on average. The source apportionment of PM1 and PM2.5 by positive matrix factorization (PMF) model indicated the main sources of secondary aerosols (25% and 34%), biomass burning (17% and 20%), traffic emission (20% and 14%), and coal combustion (17% and 14%). The biomass burning factor involved agricultural fertilization and waste incineration. The biomass burning and primary biogenic contributions were determined by specific marker sugar species. The anthropogenic sources (combustion, secondary particle formation, etc) contributed significantly to PM1 and PM2.5, and the natural sources were more evident in PM2.5. This work significantly contributes to the chemical characterization and source apportionment of PM1 and PM2.5 in near-port cities influenced by the diverse sources.  相似文献   
247.
Mercury is ranked 3rd as a global pollutant because of its long persistence in the environment. Approximately 65% of its anthropogenic emission (Hg0) to the atmosphere is from coal-thermal power plants. Thus, the Hg0 emission control from coal-thermal power plants is inevitable. Therefore, multiple sorbent materials were synthesized using a one-step pyrolysis method to capture the Hg0 from simulated coal syngas. Results showed, the Hg0 removal performance of the sorbents increased by the citric acid/ultrasonic application. T5CUF0.3 demonstrated the highest Hg0 capturing performance with an adsorption capacity of 106.81 µg/g within 60 min at 200 °C under complex simulated syngas mixture (20% CO, 20% H2, 10 ppmV HCl, 6% H2O, and 400 ppmV H2S). The Hg0 removal mechanism was proposed, revealing that the chemisorption governs the Hg0 removal process. Besides, the active Hg0 removal performance is attributed to the high dispersion of valence Fe3O4 and lattice oxygen (α) contents over the T5CUF0.3 surface. In addition, the temperature programmed desorption (TPD) and XPS analysis confirmed that H2S/HCl gases generate active sites over the sorbent surface, facilitating high Hg0 adsorption from syngas. This work represented a facile and practical pathway for utilizing cheap and eco-friendly tea waste to control the Hg0 emission.  相似文献   
248.
Activities of 210Po and 210Pb in various tissues of four species of decapod crabs and two species of cephalopod mollusks (cuttlefishes) of Kudankulam coast were studied. A non-uniform distribution of these radionuclides was observed between the organs. Of all the tissues, 210Po and 210Pb were found accumulated more in the hepatopancreas and intestine of crabs and in the digestive gland, shell gland, and intestine of cephalopods. Among crabs, Charybdis lucifera registered a little higher 210Po and 210Pb activities. The cephalopod species Loligo duvauceli displayed higher 210Po and 210Pb in some organs when compared to Sepia pharaonis. The muscle of all the species registered lower activity. In cephalopods, the activity ratio of 210Po/210Pb fell within the range of 1?C2 for most of the organs, and in crab tissues, it varied from 1.7 to 31.4. The biological concentration factor for organs of cephalopods ranged from 1.2 ×103 to 4.3 ×105 for 210Po and 4.8 ×102 to 8.4 ×104 for 210Pb and for organs of crabs it varied between 2.0 ×104 and 1.9 ×106 for 210Po and 9.2 ×102 and 2.4 ×104 for 210Pb. The study revealed that the organs associated with digestion and metabolism displayed a higher activity concentration than the other tissues. A significant variation in the accumulation of 210Po and 210Pb was noted between species (P?<?0.05). The activity levels recorded are in agreement with values recorded in related organisms in other parts of the world. The data generated will act as a reference database for these organisms of this coast in which a nuclear power station is under construction.  相似文献   
249.
Determination of solid-bound element concentrations is an important initial step in environmental studies especially for assessment of contamination level, and of origin, relative mobility, and fate of contaminants. This study revealed that a relatively new collision/reaction cell inductively coupled plasma-mass spectrometry is a potent tool for determining total and partially extractable solid-bound element (V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, and Pb) concentrations in a complex matrix solution containing HF and/or HCl. Six different extraction methods commonly used for environmental monitoring studies were tested for their bias and variability using estuarine and marine standard reference materials. Microwave-assisted methods based on concentrated [HNO3] or [HNO3?+?HF (4:1)] and [HNO3?+?HF?+?HCl (10:3:2)] were applied for determining pseudo-total and total element concentrations, respectively. Dilute-acids (1 M HNO3, 1 M HCl, and 0.5 M HCl) were utilized in single-step partial extraction protocols. Except the 0.5 M HCl cold-extraction method which was performed at room temperature, other partial extraction protocols used microwave-digestion. This study demonstrated that the use of microwave-assisted methods in studies aimed at determining the non-residual, non-specific extractable fractions of elements in solid environmental samples may result in overestimation, and thus needs to be re-examined. We believe that the cold extraction method will play a significant role in future environmental monitoring studies. Nevertheless, results of the cold extraction method not accompanied with total element concentrations have limited value, as the amount of extraction may vary significantly with the nature (origin) of the elements, and with the types of the samples. Therefore, we suggest combining microwave-assisted total digestion and 0.5 M HCl cold-extraction methods as a relatively cost- and time-effective, environmentally sound screening procedure for routine environmental monitoring programs involving a large number of samples from diverse geological and anthropogenic settings.  相似文献   
250.
Explosibility of micron- and nano-titanium was determined and compared according to explosion severity and likelihood using standard dust explosion equipment. ASTM methods were followed using a Siwek 20-L explosion chamber, MIKE 3 apparatus and BAM oven. The explosibility parameters investigated for both size ranges of titanium include explosion severity (maximum explosion pressure (Pmax) and size-normalized maximum rate of pressure rise (KSt)) and explosion likelihood (minimum explosible concentration (MEC), minimum ignition energy (MIE) and minimum ignition temperature (MIT)). Titanium particle sizes were ?100 mesh (<150 μm), ?325 mesh (<45 μm), ≤20 μm, 150 nm, 60–80 nm, and 40–60 nm. The results show a significant increase in explosion severity as the particle size decreases from ?100 mesh with an apparent plateau being reached at ?325 mesh and ≤20 μm. Micron-size explosion severity could not be compared with that for nano-titanium due to pre-ignition of the nano-powder in the 20-L chamber. The likelihood of an explosion increases significantly as the particle size decreases into the nano range. Nano-titanium is very sensitive and can self-ignite under the appropriate conditions. The explosive properties of the nano-titanium can be suppressed by adding nano-titanium dioxide to the dust mixture. Safety precautions and procedures for the nano-titanium are also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号