首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
废物处理   2篇
环保管理   3篇
综合类   4篇
基础理论   4篇
污染及防治   6篇
评价与监测   5篇
社会与环境   2篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2017年   2篇
  2015年   1篇
  2014年   2篇
  2013年   7篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2008年   1篇
  2006年   1篇
  2005年   2篇
排序方式: 共有26条查询结果,搜索用时 125 毫秒
21.
To determine the possible contributions of point and non-point sources to carbon and nutrient loading in the Ganga River, we analyzed N, P, and organic carbon (OC) in the atmospheric deposits, surface runoff, and in the river along a 37-km stretch from 2013 to 2015. We also assessed the trophic status of the river as influenced by such sources of nutrient input. Although the river N, P, and productivity showed a declining trend with increasing discharge, runoff DOC and dissolved reactive phosphorus (DRP) increased by 88.05 and 122.7% between the Adpr and Rjht sites, indicating contributions from atmospheric deposition (AD) coupled with land use where agriculture appeared to be the major contributor. Point source input led to increased river concentrations of NO3 ?, NH4 +, DRP, and DOC by 10.5, 115.9, 115.2, and 67.3%, respectively. Increases in N, P, and productivity along the gradient were significantly negatively correlated with river discharge (p < 0.001), while river DOC and dissolved silica showed positive relationships. The results revealed large differences in point and non-point sources of carbon and nutrient input into the Ganga River, although these variations were strongly influenced by the seasonality in surface runoff and river discharge. Despite these variations, N and P concentrations were sufficient to enhance phytoplankton growth along the study stretch. Allochthonous input together with enhanced autotrophy would accelerate heterotrophic growth, degrading the river more rapidly in the near future. This study suggests the need for large-scale inter-regional time series data on the point and non-point source partitioning and associated food web dynamics of this major river system.  相似文献   
22.
Experiments were conducted for the study of nutrient budget in ten farmer's ponds (0.2–0.5 ha) in Orissa, India with a mean water depth of 1.0–1.2 m. Scampi (Macrobrachium rosenbergii) were stocked in these ponds at stocking density of 3.75–5.0/m2. The average initial body weight of scampi was 0.02 mg. The culture period was for 4 months. Feed was the main input. Total feed applied to these ponds ranged from 945 to 2261 kg pond/cycle (crop). The feed conversion ratio varied 1.65 to 1.78. In addition to feed, rice straw, urea, and single super phosphate were applied to these ponds in small amounts for plankton production. At harvest time, the average weight of scampi varied from 60–90 g. The budget showed that feed was the major input of nitrogen (N), phosphorus (P), and carbon in these ponds. The inorganic fertilizer (urea and single super phosphate), organic fertilizer (rice straw and yeast extract), and inlet water, either from the initial fills or from rainwater, were the source of all other N, P, and organic carbon (OC) to these ponds. Total N applied to these ponds through all these inputs ranged from 44.45 to 103.98 kg N per crop, 12.23 to 28.79 kg P per crop, and from 381.54 to 905.22 kg OC per crop, respectively. Among all the inputs, feed alone accounted for 95.34 % N, 97.98 % P, and 94.27 % OC, respectively. Recovery of 16.34 to 38.66 kg N (average 29.27 kg), 1.28 to 3.02 kg P (average 2.29 kg), and 63.21 to 149.51 kg OC (average 113.20 kg), respectively, by the scampi harvest were observed in these ponds. Thus, harvest of scampi accounted for recovery of 35.18 to 39.01 (average 36.85 %) of added N, 10.09 to 10.97 (average 10.44 %) of added P, and 7.57 to 17.12 (average 16.34 %) of added OC, respectively.  相似文献   
23.
The Role of Wood Material for Greenhouse Gas Mitigation   总被引:2,自引:0,他引:2  
Based on an interdisciplinary perspective the role of wood as a carbon sink, as a multi-purpose material, and as a renewable energy source for the net reduction of greenhouse gases is discussed. We synthesize aspects from engineering, natural and social sciences to better understand the role of wood substitution in CO2 mitigation. We also formulate some recommendations on filling knowledge gaps that could be useful for policy making regarding how wood substitution could be further expanded. There are sufficient wood resources to substantially increase the use of wood for material and energy purposes. However, a number of factors hinder a wider use of wood for energy and material purposes. Furthermore, an analysis of wood substitution is a very complex issue, since the substitution influencing factors are to be found along the entire wood supply chain and involve several industries, socio-economic and cultural aspects, traditions, price dynamics, and structural and technical change. To improve the knowledge about wood as a substitute for other resources and the implications, it would be helpful to better integrate research from different disciplines on the subject and to cover different scales from a project to an economy-wide level.  相似文献   
24.
The present work deals with the determination of uranium concentrations in drinking and ground water samples by laser fluorimetry and calculation of cumulative, age-dependent radiation doses to humans. The concentrations were found to be between 0.20 ± 0.03 and 64.0 ± 3.6 μg L?1, with an average of 11.1 ± 1.5 μg L?1, well within the drinking water limit of regulatory bodies. The concentrations of uranium increase with depth of water samples collection. The estimated annual ingestion dose due to the intake of uranium through drinking water for all age groups varied between 0.2 and 137 μSv a?1, with an average of 17.3 μSv a?1. The mean annual ingestion dose is 5% of the global average ingestion dose, for infants, marginally higher than for other age group. Most effective dose values were less than 20 μSv a?1.  相似文献   
25.
A method previously used to measure thickness of the surface mucus layer (SML) of the mammalian gastrointestinal tract has been applied to the SML of reef corals. It involves manual measurement of mucus thickness using a micromanipulator and fine glass needle (micropipette) and is non-destructive to the coral, meaning that repeated measurements can be taken. A measurable mucus layer was recorded in all cases in the study, which comprised 450 individual thickness measurements from four coral species. Mucus thickness ranged from 145 to 700 μm. Thus, whatever dynamic processes control mucus synthesis, secretion to the tissue surface and subsequent release into the water column, a continuous mucosal barrier is maintained. A change in SML thickness was recorded as a response to aerial exposure during the natural tidal cycle and to solar exposure-induced bleaching, although the response due to bleaching varied between two studied species. The technique is rapid, cost-effective and a simple means of assessing coral SML thickness, a variable that shows significant variation in relation to environmental conditions and is likely to be an important health indicator in these organisms.  相似文献   
26.
Journal of Polymers and the Environment - The present review describes the application of lignocellulosic biomass-derived nanocellulose for wastewater remediation with a focus on the removal of...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号