首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2753篇
  免费   77篇
  国内免费   31篇
安全科学   124篇
废物处理   116篇
环保管理   814篇
综合类   281篇
基础理论   650篇
环境理论   1篇
污染及防治   595篇
评价与监测   162篇
社会与环境   83篇
灾害及防治   35篇
  2023年   15篇
  2022年   22篇
  2021年   29篇
  2020年   20篇
  2019年   34篇
  2018年   52篇
  2017年   49篇
  2016年   72篇
  2015年   61篇
  2014年   58篇
  2013年   293篇
  2012年   111篇
  2011年   145篇
  2010年   116篇
  2009年   124篇
  2008年   161篇
  2007年   148篇
  2006年   129篇
  2005年   97篇
  2004年   80篇
  2003年   100篇
  2002年   86篇
  2001年   56篇
  2000年   47篇
  1999年   24篇
  1998年   43篇
  1997年   28篇
  1996年   38篇
  1995年   46篇
  1994年   31篇
  1993年   44篇
  1992年   36篇
  1991年   15篇
  1990年   24篇
  1989年   17篇
  1988年   25篇
  1987年   15篇
  1986年   19篇
  1985年   30篇
  1984年   23篇
  1983年   24篇
  1982年   34篇
  1981年   34篇
  1980年   32篇
  1979年   21篇
  1978年   23篇
  1977年   11篇
  1976年   8篇
  1974年   7篇
  1972年   9篇
排序方式: 共有2861条查询结果,搜索用时 15 毫秒
141.
Street sweeping is often proposed as a means of reducing the emissions from paved roads. The objective of this study was to evaluate the effectiveness of street sweeping on ambient particulate matter concentrations and to determine the difference In source contributions to PM10 concentrations between street sweeping and non-street sweeping periods.

Chemically-speciated measurements of PM10 and PM2.5 were taken in the commercial section of Reno, Nevada, for a one-month sampling period. The Chemical Mass Balance (CMB) model was applied to these data and an average of approximately 50 percent of the PM10 was apportioned to resuspended geological material. During half of the sampling period, streets In the vicinity of the sampling site were completely swept with a regenerative-air vacuum sweeper, while no sweeping was performed during the remainder of the experiment. Ratios of primary geological contributions divided by primary motor vehicle contributions to PM10 were compared between sweeping and non-sweeping periods using analysis of variance. This ratio of source contributions minimizes the effects of variations in traffic volume and meteorological dispersion. No significant differences in geological contributions to PM10 were detected as a result of regenerative-air vacuum street sweeping.  相似文献   
142.
Laboratory evaluation of the efficacy of soil phase photodegradation of recalcitrant hazardous organic components of wood treating wastes is described. The photodecomposition of anthracene, biphenyl, 9H-carbazole, m-cresol, dibenzofuran, fluorene, pentachlorophenol, phenanthrene, pyrene and quinoline under UV and visible light was monitored over a 50-day reaction period in three test soils. Methylene blue, riboflavin, hydrogen peroxide, peat moss and diethylamine soil amendments were evaluated as to their effect on the enhancement of compound photoreaction rates in the test soil systems. Dark control samples monitored over the entire study period were utilized to quantify non-photo mediated reaction losses. Compounds losses in both the dark control and irradiated samples were found to follow first order kinetics, allowing the calculation of first order photodegradation reaction rate constants for each test soil/compound combination. Degradation due to photochemical activity was observed for all test compounds, with compound photolytic half-lives ranging from 7 to approximately 180 days. None of the soil amendments were found to improve soil phase photodegradation, although photosensitization by anthracene was shown to significantly enhance the rate of photodegradation of the other test compounds. Soil type, and its characteristic of internal reflectance, proved to be the most significant factor affecting compound degradation rates suggesting the necessity for site specific assessments of soil phase photodegradation potential.  相似文献   
143.
Abstract

Neural networks have shown tremendous promise in modeling complex problems. This work describes the development and validation of a neural network for the purpose of estimating point source emission rates of hazardous gases. This neural network approach has been developed and tested using experimental data obtained for two specific air pollutants of concern in West Texas, hydrogen sulfide and ammonia. The prediction of the network is within 20% of the measured emission rates for these two gases at distances of less than 50 m. The emission rate estimations for ground level releases were derived as a function of seven variables: downwind distance, crosswind distance, wind speed, downwind concentration, atmospheric stability, ambient temperature, and relative humidity. A backpropagation algorithm was used to develop the neural network and is also discussed here. The experimental data were collected at the Wind Engineering Research Field Site located at Texas Tech University in Lubbock, Texas. Based on the results of this study, the use of neural networks provides an attractive and highly effective tool to model atmospheric dispersion, in which a large number of variables interact in a nonlinear manner.  相似文献   
144.
Abstract

In siting a monitor to measure compliance with U.S. National Ambient Air Quality Standards (NAAQS) for par-ticulate matter (PM), there is a need to characterize variations in PM concentration within a neighborhood-scale region to achieve monitor siting objectives. A simple methodology is provided here for the selection of a neighborhood-scale site for meeting either of the two objectives identified for PM monitoring. This methodology is based on analyzing middle-scale (from 100 to 500 m) data from within the area of interest. The required data can be obtained from widely available dispersion models and emissions databases.

The performance of the siting methodology was evaluated in a neighborhood-scale field study conducted in Hudson County, NJ, to characterize the area’s inhalable particulate (PM10) concentrations. Air monitors were located within a 2- by 2-km area in the vicinity of the Lincoln Tunnel entrance in Hudson County. Results indicate the siting methodology performed well, providing a positive relationship between the predicted concentration rank at each site and the actual rank experienced during the field study. Also discussed are factors that adversely affected the predictive capabilities of the model.  相似文献   
145.
Abstract

Sorbent injection for Hg control is one of the most promising technologies for reducing Hg emissions from power-generation facilities, particularly units that do not require wet scrubbers for SO2 control. Since 1992, EPRI has been assessing the performance of Hg sorbents in pilot-scale systems installed at full-scale facilities. The initial tests were conducted on a 5000-acfm (142-m3/min) pilot baghouse. Screening potential sorbents at this scale required substantial resources for installation and operation and did not provide an opportunity to characterize sor-bents over a wide temperature range.

Data collected in the laboratory and in field tests indicate that sorbents are affected by flue gas composition and temperature. Tests carried out in actual flue gas at a number of power plants also have shown that sorbent performance can be site-specific. In addition, data collected at a field site often are different from data collected in the laboratory, with simulated flue gas mixed to match the major components in the site’s gas. To effectively estimate the costs of Hg sorbent systems at different plants, a measure of sorbent performance in the respective flue gases must be obtained. However, injection testing at multiple facilities with large pilot systems is not practical.

Over the past five years, fixed-bed characterization testing, modeling studies, and bench-scale injection testing have been undertaken to develop a low-cost technique to characterize sorbent performance in actual flue gas and subsequently to project normalized costs for Hg removal prior to full-scale demonstration. This article describes the techniques used and summarizes field-testing results from two plants burning Powder River Basin (PRB) coal for commercial activated carbon and several other sorbent types. Full-scale projections based on the results and data collected on larger-scale systems also are included.  相似文献   
146.
Abstract

Average concentrations of particulate matter with an aerodynamic diameter less than or equal to 2.5 μm (PM2.5) in Steubenville, OH, have decreased by more than 10 μg/m3 since the landmark Harvard Six Cities Study1 associated the city’s elevated PM2.5 concentrations with adverse health effects in the 1980s. Given the promulgation of a new National Ambient Air Quality Standard (NAAQS) for PM2.5 in 1997, a current assessment of PM2.5 in the Steubenville region is warranted. The Steubenville Comprehensive Air Monitoring Program (SCAMP) was conducted from 2000 through 2002 to provide such an assessment. The program included both an outdoor ambient air monitoring component and an indoor and personal air sampling component. This paper, which is the first in a series of four that will present results from the outdoor portion of SCAMP, provides an overview of the outdoor ambient air monitoring program and addresses statistical issues, most notably autocorrelation, that have been overlooked by many PM2.5 data analyses. The average PM2.5 concentration measured in Steubenville during SCAMP (18.4 μg/m3) was 3.4g/m3 above the annual PM2.5 NAAQS. On average, sulfate and organic material accounted for ~31% and 25%, respectively, of the total PM2.5 mass. Local sources contributed an estimated 4.6 μg/m3 to Steubenville’s mean PM2.5 concentration. PM2.5 and each of its major ionic components were significantly correlated in space across all pairs of monitoring sites in the region, suggesting the influence of meteorology and long-range transport on regional PM2.5 concentrations. Statistically significant autocorrelation was observed among time series of PM2.5 and component data collected at daily and 1-in-4-day frequencies during SCAMP. Results of spatial analyses that accounted for autocorrelation were generally consistent with findings from previous studies that did not consider autocorrelation; however, these analyses also indicated that failure to account for autocorrelation can lead to incorrect conclusions about statistical significance.  相似文献   
147.
Abstract

Apportionment of primary and secondary pollutants during the summer 2001 Pittsburgh Air Quality Study (PAQS) is reported. Several sites were included in PAQS, with the main site (the supersite) adjacent to the Carnegie Mellon University campus in Schenley Park. One of the additional sampling sites was located at the National Energy Technology Laboratory, located ~18 km southeast of downtown Pittsburgh. Fine particulate matter (PM2.5) mass, gas-phase volatile organic material (VOM), particulate semivolatile and nonvolatile organic material (NVOM), and ammonium sulfate were apportioned at the two sites into their primary and secondary contributions using the U.S. Environmental Protection Agency UNMIX 2.3 multivariate receptor modeling and analysis software. A portion of each of these species was identified as originating from gasoline and diesel primary mobile sources. Some of the organic material was formed from local secondary transformation processes, whereas the great majority of the secondary sulfate was associated with regional transformation contributions. The results indicated that the diurnal patterns of secondary gas-phase VOM and particulate semivolatile and NVOM were not correlated with secondary ammonium sulfate contributions but were associated with separate formation pathways. These findings are consistent with the bulk of the secondary ammonium sulfate in the Pittsburgh area being the result of contributions from distant transport and, thus, decoupled from local activity involving organic pollutants in the metropolitan area.  相似文献   
148.
Carbon tetrachloride (CTC), tetrachloroethylene (PCE), trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) were four of the most widely used cleaning and degreasing solvents in the United States. These compounds were also used in a wide variety of other applications. The history of the production and use of these four compounds is linked to the development and growth of the United States' synthetic organic chemical industry, and historical events that affected the development and use of chlorinated solvents in general. Part 1 of this article includes a discussion of the historical background common to each of the four solvents, followed by discussion on the history of CTC and PCE. In the early years of the 20th century, CTC became the first of the four solvents to come into widespread use. CTC was used as a replacement for petroleum distillates in the dry-cleaning industry, but was later replaced by PCE. In the 1990s, CTC was phased out under the Montreal Protocol due to its role in stratospheric ozone depletion.  相似文献   
149.
Ecosystem restoration in south Florida is a state and national priority centered on the Everglades wetlands. However, urban development pressures affect the restoration potential and remaining habitat functions of the natural undeveloped areas. Land use (LU) planning often focuses at the local level, but a better understanding of the cumulative effects of small projects at the landscape level is needed to support ecosystem restoration and preservation. The South Florida Ecosystem Portfolio Model (SFL EPM) is a regional LU planning tool developed to help stakeholders visualize LU scenario evaluation and improve communication about regional effects of LU decisions. One component of the SFL EPM is ecological value (EV), which is evaluated through modeled ecological criteria related to ecosystem services using metrics for (1) biodiversity potential, (2) threatened and endangered species, (3) rare and unique habitats, (4) landscape pattern and fragmentation, (5) water quality buffer potential, and (6) ecological restoration potential. In this article, we demonstrate the calculation of EV using two case studies: (1) assessing altered EV in the Biscayne Gateway area by comparing 2004 LU to potential LU in 2025 and 2050, and (2) the cumulative impact of adding limestone mines south of Miami. Our analyses spatially convey changing regional EV resulting from conversion of local natural and agricultural areas to urban, industrial, or extractive use. Different simulated local LU scenarios may result in different alterations in calculated regional EV. These case studies demonstrate methods that may facilitate evaluation of potential future LU patterns and incorporate EV into decision making.  相似文献   
150.
The aim of this investigation was to evaluate the influence of batch versus continuous flow on the removal efficiencies of chemical oxygen demand (COD), nitrogen (N) and total phosphorus (TP) in tropical subsurface flow constructed wetlands (SSF CW). The quantitative role of the higher aquatic plants in nutrient removal in these two operational modes was also investigated. Results indicated no significant difference (p > 0.05) in COD removal between batch and continuous flow modes for either the planted or unplanted treatments. Furthermore, the batch-loaded planted wetlands showed significantly (p < 0.05) higher ammonium removal efficiencies (95.2%) compared with the continuously fed systems (80.4%), most probably because the drain and fill batch mode presented systematically more oxidized environmental conditions. With respect to TP removal, for both planted and unplanted beds, there was significant enhancement (p < 0.05) in batch flow operation (69.6% for planted beds; 39.1% for unplanted beds) as compared to continuous flow operation (46.8% for planted beds; 25.5% for unplanted beds). In addition, at a 4-day hydraulic retention time (HRT), the presence of plants significantly enhanced both ammonia oxidation and TP removal in both batch and continuous modes of operation as compared to that for unplanted beds. An estimation of the quantitative role of aeration from drain and fill operation at a 4-day HRT, as compared to rhizosphere aeration by the higher aquatic plant, indicated that drain and fill operation might account for only less than half of the higher aquatic plant's quantitative contribution of oxygen (1.55 g O2 per m2 per day for batch flow versus 1.13 g O2 per m2 per day for continuous flow).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号