首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9686篇
  免费   3篇
  国内免费   1篇
安全科学   5篇
废物处理   768篇
环保管理   1211篇
综合类   950篇
基础理论   3122篇
环境理论   1篇
污染及防治   1735篇
评价与监测   1004篇
社会与环境   894篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   1474篇
  2017年   1373篇
  2016年   1196篇
  2015年   128篇
  2014年   15篇
  2013年   11篇
  2012年   460篇
  2011年   1338篇
  2010年   688篇
  2009年   600篇
  2008年   879篇
  2007年   1228篇
  2006年   2篇
  2005年   19篇
  2004年   32篇
  2003年   61篇
  2002年   98篇
  2001年   18篇
  2000年   12篇
  1999年   4篇
  1998年   9篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   4篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1984年   11篇
  1983年   8篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
  1966年   1篇
  1935年   2篇
排序方式: 共有9690条查询结果,搜索用时 15 毫秒
91.
Demand for green energy production is arising all over the world. A lot of emphasis is laid in making the buildings green. Even a small amount of energy savings made contribute to saving the environment. In this study, an idea is proposed and studied to extract power from the high head water in the pipelines of a building. A building of height 15 m is considered for this study. Water flowing in the pipe has sufficient energy to run a micro hydro turbine. The feasibility of producing electrical energy from the energy of pipe water is found. The motivation is to find the feasibility of generating power using a low-cost turbine. The experimental setup consists of micro turbine of 135 mm diameter coupled to a 12-V DC generator; LEDs and resistors are employed to validate the results. The theoretical calculations were presented using the fundamental equations of fluid mechanics. The theoretical results are validated using experimental and numerical results using CFD simulation. In addition, exergy analysis has been carried out to quantify the irreversibilities during the process in the system.  相似文献   
92.
In order to understand the biodegradability of algal-derived organic matter, biodegradation experiments were conducted with 13C and 15N-labeled natural phytoplankton and periphytic algal populations in experimental conditions for 60 days. Qualitative changes in the dissolved organic matter were also determined using parallel factor analysis and the stable carbon isotopic composition of the hydrophobic dissolved organic matter through the experimental period. Although algal-derived organic matter is considered to be easily biodegradable, the initial amounts of total organic carbon newly produced by phytoplankton and periphytic algae remained approximately 16 and 44 % after 60 days, respectively, and about 22 and 43 % of newly produced particulate nitrogen remained. Further, the dissolved organic carbon derived from both algal populations increased significantly after 60 days. Although the dissolved organic matter gradually became refractory, the contributions of the algal-derived organic matter to the dissolved organic matter and hydrophobic dissolved organic matter increased. Our laboratory experimental results suggest that algal-derived organic matter produced by phytoplankton and periphytic algae could contribute significantly to the non-biodegradable organic matter through microbial transformations.  相似文献   
93.
Among strains of Shiga-toxin-producing Escherichia coli (STEC), seven serogroups (O26, O45, O103, O111, O121, O145, and O157) are frequently associated with severe clinical illness in humans. The development of methods for their reliable detection from complex samples such as food has been challenging thus far, and is currently based on the PCR detection of the major virulence genes stx1, stx2, and eae, and O-serogroup-specific genes. However, this approach lacks resolution. Moreover, new STEC serotypes are continuously emerging worldwide. For example, in May 2011, strains belonging to the hitherto rarely detected STEC serotype O104:H4 were identified as causative agents of one of the world’s largest outbreak of disease with a high incidence of hemorrhagic colitis and hemolytic uremic syndrome in the infected patients. Discriminant typing of pathogens is crucial for epidemiological surveillance and investigations of outbreaks, and especially for tracking and tracing in case of accidental and deliberate contamination of food and water samples. Clustered regularly interspaced short palindromic repeats (CRISPRs) are composed of short, highly conserved DNA repeats separated by unique sequences of similar length. This distinctive sequence signature of CRISPRs can be used for strain typing in several bacterial species including STEC. This review discusses how CRISPRs have recently been used for STEC identification and typing.  相似文献   
94.
The degradation of water resources by diffuse pollution, mainly due to nitrate and pesticides, is an important matter for public health. Restoration of the quality of natural water catchments by focusing on their catchment areas is therefore a national priority in France. To consider catchment areas as homogeneous and to expend an equal effort on the entire area inevitably leads to a waste of time and money, and restorative actions may not be as efficient as intended. The variability of the pedological and geological properties of the area is actually an opportunity to invest effort on smaller areas, simply because every action is not equally efficient on every kind of pedological or geological surface. Using this approach, it is possible to invest in a few selected zones that will be efficient in terms of environmental results. The contributive hydraulic areas (CHA) concept is different from that of the catchment area. Because the transport of most of the mobile and persistent pollutants is primarily driven by water circulation, the concept of the CHA is based on the water pathway from the surface of the soil in the catchment area to the well. The method uses a three-dimensional hydrogeological model of surface and groundwater integrated with a geographic information system called Watermodel. The model calculates the contribution (m3/h or %) of each point of the soil to the total flow pumped in a well. Application of this model, partially funded by the Seine Normandy Basin Agency, to the catchment of the Dormelles Well in the Cretaceous chalk aquifer in the Orvanne valley, France (catchment area of 23,000 ha at Dormelles, county 77), shows that 95 % of the water pumped at the Dormelles Well comes from only 26 % of the total surface area of the catchment. Consequently, an action plan to protect the water resource will be targeted at the 93 farmers operating in this source area rather than the total number of farmers (250) across the entire 23,000 ha. Another model, developed from Epiclès© software, permits the calculation of the under-root nitrate concentrations for each field based on soil type, climate, and farming practices. When the Watermodel and Epiclès© are coupled, nitrate transfers from the soil to the catchment and the river can be modeled. In this study, the initial pollution due to the actual farming practices was simulated and we were also able to estimate the efficiency of the agronomic action plan by testing several scenarios and calculating the time needed to reach the target nitrate concentration in the well.  相似文献   
95.
The month-to-month variability of biomass and CaCO3 precipitation by dense charophyte beds was studied in a shallow Chara-lake at two depths, 1 and 3 m. Charophyte dry weights (d.w.), the percentage contribution of calcium carbonate to the dry weight and the precipitation of CaCO3 per 1 m2 were analysed from May to October 2011. Physical-chemical parameters of water were also measured for the same sample locations. The mean dry weight and calcium carbonate precipitation were significantly higher at 1 m than at 3 m. The highest measured charophyte dry weight (exceeding 2000 g m?2) was noted at 1 m depth in September, and the highest CaCO3 content in the d.w. (exceeding 80 % of d.w.) was observed at 3 m depth in August. The highest CaCO3 precipitation per 1 m2 exceeded 1695 g at 1 m depth in August. Significant differences in photosynthetically active radiation (PAR) were found between 1 and 3 m depths; there were no significant differences between depths for other water properties. At both sampling depths, there were distinct correlations between the d.w., CaCO3 content and precipitation and water properties. In addition to PAR, the water temperature and magnesium and calcium ion concentrations were among the most significant determinants of CaCO3 content and d.w. The results show that light availability seems to be the major factor in determining charophyte biomass in a typical, undisturbed Chara-lake. The study results are discussed in light of the role of charophyte vegetation in whole ecosystem functioning, with a particular focus on sedimentary processes and the biogeochemical cycle within the littoral zone.  相似文献   
96.
Phosphorus (P) in agricultural ecosystems is an essential and limited element for plants and microorganisms. However, environmental problems caused by P accumulation as well as by P loss have become more and more serious. Oxygen isotopes of phosphate can trace the sources, migration, and transformation of P in agricultural soils. In order to use the isotopes of phosphate oxygen, appropriate extraction and purification methods for inorganic phosphate from soils are necessary. Here, we combined two different methods to analyze the oxygen isotopic composition of inorganic phosphate (δ18OP) from chemical fertilizers and different fractions (Milli-Q water, 0.5 mol L?1 NaHCO3 (pH = 8.5), 0.1 mol L?1 NaOH and 1 mol L?1 HCl) of agricultural soils from the Beijing area. The δ18OP results of the water extracts and NaHCO3 extracts in most samples were close to the calculated equilibrium value. These phenomena can be explained by rapid P cycling in soils and the influence of chemical fertilizers. The δ18OP value of the water extracts and NaHCO3 extracts in some soil samples below the equilibrium value may be caused by the hydrolysis of organic P fractions mediated by extracellular enzymes. The δ18OP values of the NaOH extracts were above the calculated equilibrium value reflecting the balance state between microbial uptake of phosphate and the release of intracellular phosphate back to the soil. The HCl extracts with the lowest δ18OP values and highest phosphate concentrations indicated that the HCl fraction was affected by microbial activity. Hence, these δ18Op values likely reflected the oxygen isotopic values of the parent materials. The results suggested that phosphate oxygen isotope analyses could be an effective tool in order to trace phosphate sources, transformation processes, and its utilization by microorganisms in agricultural soils.  相似文献   
97.
Lately, the technical research on carbon dioxide capture and utilization (CCU) has achieved important breakthroughs. While single CO2-based innovations are entering the markets, the possible economic effects of a large-scale CO2 utilization still remain unclear to policy makers and the public. Hence, this paper reviews the literature on CCU and provides insights on the motivations and potential of making use of recovered CO2 emissions as a commodity in the industrial production of materials and fuels. By analyzing data on current global CO2 supply from industrial sources, best practice benchmark capture costs and the demand potential of CO2 utilization and storage scenarios with comparative statics, conclusions can be drawn on the role of different CO2 sources. For near-term scenarios the demand for the commodity CO2 can be covered from industrial processes, that emit CO2 at a high purity and low benchmark capture cost of approximately 33 €/t. In the long-term, with synthetic fuel production and large-scale CO2 utilization, CO2 is likely to be available from a variety of processes at benchmark costs of approx. 65 €/t. Even if fossil-fired power generation is phased out, the CO2 emissions of current industrial processes would suffice for ambitious CCU demand scenarios. At current economic conditions, the business case for CO2 utilization is technology specific and depends on whether efficiency gains or substitution of volatile priced raw materials can be achieved. Overall, it is argued that CCU should be advanced complementary to mitigation technologies and can unfold its potential in creating local circular economy solutions.  相似文献   
98.
Lignite (PK), bituminous (FI) and biomass (SE) fly ashes (FAs) were mineralogically and geochemically characterised, and their element leachability was studied with batch leaching tests. The potential for acid neutralisation (ANP) was quantified by their buffering capacity, reflecting their potential for neutralisation of acid mine drainage. Quartz was the common mineral in FAs detected by XRD with iron oxide, anhydrite, and magnesioferrite in PK, mullite and lime in FI, and calcite and anorthite in SE. All the FAs had high contents of major elements such as Fe, Si, Al and Ca. The Ca content in SE was six and eight times higher compared to PK and FI, respectively. Sulphur content in PK and SE was one magnitude higher than FI. Iron concentrations were higher in PK. The trace element concentrations varied between the FAs. SE had the highest ANP (corresponding to 275 kg CaCO3?tonne?1) which was 15 and 10 times higher than PK and FI, respectively. The concentrations of Ca2+, SO4 2?, Na+ and Cl? in the leachates were much higher compared to other elements from all FA samples. Iron, Cu and Hg were not detected in any of the FA leachates because of their mild to strong alkaline nature with pH ranging from 9 to 13. Potassium leached in much higher quantity from SE than from the other ashes. Arsenic, Mn and Ni leached from PK only, while Co and Pb from SE only. The concentrations of Zn were higher in the leachates from SE. The FAs used in this study have strong potential for the neutralisation of AMD due to their alkaline nature. However, on the other hand, FAs must be further investigated, with scaled-up experiments before full-scale application, because they might leach pronounced concentrations of elements of concern with decreasing pH while neutralising AMD.  相似文献   
99.
Increasing amount of dyes in an ecosystem has propelled the search of various methods for dye removal. Amongst all the methods, adsorption occupies a prominent place in dye removal. Keeping this in mind, many adsorbents used for the removal of hazardous anionic azo dye Congo red (CR) from aqueous medium were reviewed by the authors. The main objectives behind this review article are to assemble the information on scattered adsorbents and enlighten the wide range of potentially effective adsorbents for CR removal. Thus, CR sorption by various adsorbents such as activated carbon, non-conventional low-cost materials, nanomaterials, composites and nanocomposites are surveyed and critically reviewed as well as their sorption capacities are also compared. This review also explores the grey areas of the adsorption performance of various adsorbents with reference to the effects of pH, contact time, initial dye concentration and adsorbent dosage. The equilibrium adsorption isotherm, kinetic and thermodynamic data of different adsorbents used for CR removal were also analysed. It is evident from a literature survey of more than 290 published papers that nanoparticle and nanocomposite adsorbents have demonstrated outstanding adsorption capabilities for CR.
Graphical abstract ?
  相似文献   
100.
The rapid growth of urbanization and industrialization, along with dramatic climate change, has strongly influenced hydrochemical characteristics in recent decades in China and thus could cause the variation of pH and general total hardness of a river. To explore such variations and their potential influencing factors in a river of the monsoon climate region, we analyzed a long-term monitoring dataset of pH, SO4 2?, NOx, general total hardness (GH), Mg2+, Ca2+, and Cl? in surface water and groundwater in the Luan River basin from 1985 to 2009. The nonparametric Seasonal Kendall trend test was used to test the long-term trends of pH and GH. Relationship between the affecting factors, pH and GH were discussed. Results showed that pH showed a decreasing trend and that GH had an increasing trend in the long-term. Seasonal variation of pH and GH was mainly due to the typical monsoon climate. Results of correlation analysis showed that the unit area usage amounts of chemical fertilizer, NO3 ?, and SO4 2? were negatively correlated with pH in groundwater. In addition, mining activity affected GH spatial variation. Acid deposition, drought, and increasing the use of chemical fertilizers would contribute to the acidification trend, and mining activities would affect the spatial variation of GH. Variations of precipitation and runoff in semi-arid monsoon climate areas had significant influences on the pH and GH. Our findings implied that human activities played a critical role in river acidification in the semi-arid monsoon climate region of northern China.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号