首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29658篇
  免费   276篇
  国内免费   273篇
安全科学   819篇
废物处理   1325篇
环保管理   3806篇
综合类   4453篇
基础理论   7796篇
环境理论   11篇
污染及防治   7766篇
评价与监测   2170篇
社会与环境   1864篇
灾害及防治   197篇
  2022年   290篇
  2021年   285篇
  2020年   201篇
  2019年   251篇
  2018年   457篇
  2017年   434篇
  2016年   706篇
  2015年   516篇
  2014年   764篇
  2013年   2435篇
  2012年   943篇
  2011年   1243篇
  2010年   1103篇
  2009年   1145篇
  2008年   1286篇
  2007年   1357篇
  2006年   1205篇
  2005年   1027篇
  2004年   962篇
  2003年   989篇
  2002年   929篇
  2001年   1261篇
  2000年   884篇
  1999年   555篇
  1998年   382篇
  1997年   379篇
  1996年   421篇
  1995年   429篇
  1994年   408篇
  1993年   368篇
  1992年   346篇
  1991年   346篇
  1990年   341篇
  1989年   353篇
  1988年   292篇
  1987年   258篇
  1986年   228篇
  1985年   212篇
  1984年   261篇
  1983年   242篇
  1982年   287篇
  1981年   228篇
  1980年   201篇
  1979年   249篇
  1978年   179篇
  1977年   168篇
  1976年   152篇
  1975年   152篇
  1974年   139篇
  1973年   139篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
Fresh beef cattle (Bos taurus) manure has traditionally been applied to cropland in southern Alberta, but there has been an increase in application of composted manure to cropland in this region. However, the quality of runoff under fresh manure (FM) versus composted manure (CM) has not been investigated. Our objective was to compare runoff quality under increasing rates (0, 13, 42, 83 Mg ha(-1) dry wt.) of FM and CM applied for two consecutive years to a clay loam soil cropped to irrigated barley (Hordeum vulgare L.). We determined total phosphorus (TP), particulate phosphorus (PP), dissolved reactive phosphorus (DRP), total nitrogen (TN), NH4-N, and NO3-N concentrations and loads in runoff after one (1999) and two (2000) applications of FM and CM. We found significantly (P < or = 0.05) higher TP, DRP, and NH4-N concentrations, and higher DRP and TN loads under FM than CM after 2 yr of manure application. The TP loads were also higher under FM than CM at the 83 Mg ha(-1) rate in 2000, and DRP loads were higher for FM than CM at this high rate when averaged over both years. Application rate had a significant effect on TP and DRP concentrations in runoff. In addition, the slope values of the regressions between TP and DRP in runoff versus application rate were considerably higher for FM in 2000 than for FM in 1999, and CM in both 1999 and 2000. Significant positive relationships were found for TP and DRP in runoff versus soil Kelowna-extractable P and soil water-extractable P for FM and CM in 2000, indicating that interaction of runoff with the soil controlled the release of P. Total P and DRP were the variables most affected by the treatments. Overall, our study found that application of CM rather than FM to cropland may lower certain forms of P and N in surface runoff, but this is dependent on the interaction with year, application rate, or both.  相似文献   
942.
Sorption dynamics of organic and inorganic phosphorus compounds in soil   总被引:1,自引:0,他引:1  
Phosphorus retention in soils is influenced by the form of P added. The potential impact of one P compound on the sorption of other P compounds in soils has not been widely reported. Sorption isotherms were utilized to quantify P retention by benchmark soils from Indiana, Missouri, and North Carolina when P was added as inorganic P (Pi) or organic P (beta-D-glucose-6-phosphate, G6P; adenosine 5'-triphosphate, ATP; and myoinositol hexaphosphate, IP6) and to determine whether soil P sorption by these organic P compounds and Pi was competitive. Isotherm supernatants were analyzed for pH and total P using standard protocols, while Pi and organic P compounds were assayed using ion chromatography. Under the controlled conditions of this study, the affinity of all soils for P sources followed the order IP6 > G6P > ATP > Pi. Each organic P source had a different potential to desorb Pi from soils, and the order of greatest to least Pi desorption was G6P > ATP > IP6. Glucose-6-phosphate and ATP competed more directly with Pi for sorption sites than IP6 at greater rates of P addition, but at the lesser rates of P addition, IP6 actually desorbed more Pi. Inositol hexaphosphate was strongly sorbed by all three soils and was relatively unaffected by the presence of other P sources. Decreased total P sorption due to desorption of Pi can be caused by relatively small additions of organic P, which may help explain vertical P movement in manured soils. Sorption isotherms performed using Pi alone did not accurately predict total P sorption in soils.  相似文献   
943.
Rapid and reliable methods for documenting soil erosion associated with forest harvest operations are needed to support the development of best management practices for soil and water conservation. To address this need, the potential for using 7Be measurements to estimate patterns and amounts of soil redistribution associated with individual post-harvest events was explored. The 7Be technique, which was originally developed for use on agricultural land, was employed to estimate soil redistribution associated with a period of heavy rainfall within a harvested forest area located in the Lake Region of Chile (39 degrees 44'7' S, 73 degrees 10'39' W; 22% slope; and mean annual rainfall 2300 mm yr(-1)). The results provided by the 7Be technique were validated against direct measurements of soil gain or loss during the same period obtained using erosion pins. The information produced by the two approaches was similar. The results of this study demonstrate the potential for using 7Be measurements to document event-based erosion in recently harvested forest areas.  相似文献   
944.
Plant species vary in response to atmospheric CO2 concentration due to differences in physiology, morphology, phenology, and symbiotic relationships. These differences make it very difficult to predict how plant communities will respond to elevated CO2. Such information is critical to furthering our understanding of community and ecosystem responses to global climate change. To determine how a simple plant community might respond to elevated CO2, a model regenerating longleaf pine community composed of five species was exposed to two CO2 regimes (ambient, 365 micromol mol(-1) and elevated, 720 micromol mol(-1)) for 3 yr. Total above- and belowground biomass was 70 and 49% greater, respectively, in CO2-enriched plots. Carbon (C) content followed a response pattern similar to biomass, resulting in a significant increase of 13.8 Mg C ha(-1) under elevated CO2. Responses of individual species, however, varied. Longleaf pine (Pinus palustris Mill.) was primarily responsible for the positive response to CO2 enrichment. Wiregrass (Aristida stricta Michx.), rattlebox (Crotalaria rotundifolia Walt. Ex Gmel.), and butterfly weed (Asclepias tuberosa L.) exhibited negative above- and belowground biomass responses to elevated CO2, while sand post oak (Quercus margaretta Ashe) did not differ significantly between CO2 treatments. As with pine, C content followed patterns similar to biomass. Elevated CO2 resulted in alterations in community structure. Longleaf pine comprised 88% of total biomass in CO2-enriched plots, but only 76% in ambient plots. In contrast, wiregrass, rattlebox, and butterfly weed comprised 19% in ambient CO2 plots, but only 8% under high CO2. Therefore, while longleaf pine may perform well in a high CO2 world, other members of this community may not compete as well, which could alter community function. Effects of elevated CO2 on plant communities are complex, dynamic, and difficult to predict, clearly demonstrating the need for more research in this important area of global change science.  相似文献   
945.
Dormant-season application of biosolids increases desert grass production more than growing season application in the first growing season after application. Differential patterns of NO3-N (plant available N) release following seasonal biosolids application may explain this response. Experiments were conducted to determine soil nitrate nitrogen dynamics following application of biosolids during two seasons in a tobosagrass [Hilaria mutica (Buckl.) Benth.] Chihuahuan Desert grassland. Biosolids were applied either in the dormant (early April) or growing (early July) season at 0, 18, or 34 dry Mg ha(-1). A polyester-nylon mulch was also applied to serve as a control that approximated the same physical effects on the soil surface as the biosolids but without any chemical effects. Supplemental irrigation was applied to half of the plots. Soil NO3-N was measured at two depths (0-5 and 5-15 cm) underneath biosolids (or mulch) and in interspace positions relative to surface location of biosolids (or mulch). Dormant-season biosolids application significantly increased soil NO3-N during the first growing season, and also increased soil NO3-N throughout the first growing season compared to growing-season biosolids application in a year of higher-than-average spring precipitation. In a year of lower-than-average spring precipitation, season of application did not affect soil NO3-N. Soil NO3-N was higher at both biosolids rates for both seasons of application than in the control treatment. Biosolids increased soil NO3-N compared to the inert mulch. Irrigation did not significantly affect soil NO3-N. Soil NO3-N was not significantly different underneath biosolids and in interspace positions. Surface soil NO3-N was higher during the first year of biosolids application, and subsurface soil NO3-N increased during the second year. Results showed that biosolids rate and season of application affected soil NO3-N measured during the growing season. Under dry spring-normal summer precipitation conditions, season of application did not affect soil NO3-N; in contrast, dormant season application increased soil NO3-N more than growing season application under wet spring-dry summer conditions.  相似文献   
946.
The effect of mechanically aerating grassland before liquid manure application in the fall on surface runoff and transport of nutrients and solids was studied in a high rainfall area. The two treatments were control and aeration, the latter receiving one pass with an aerator perpendicular to the slope before fall application of liquid manure (dairy in Years 1-3 and swine in Year 4). Treatments were randomly assigned on 3 to 5% sloping land with a silt loam surface soil (Aquic Dystroxerept) planted in orchardgrass (Dactylis glomerata L.). Runoff from natural rainfall events was sampled for nutrient and solids analysis. Aeration significantly reduced runoff and loads of suspended solids, total Kjeldahl N (TKN), and dissolved reactive P in all years. Annual runoff amounts were reduced by 47 to 81%, suspended and volatile solid loads by 48 to 69% and 42 to 83%, respectively, TKN loads by 56 to 81%, and total P (TP) loads by 25 to 75%. Loads of the soluble nutrient NH4-N, dissolved reactive P, and K were reduced by 41 to 83%. The first three runoff events after manure application accounted for approximately one-third of the annual total runoff and solid and nutrient loads when averaged across treatments, with loads of TKN, K, and NH4-N totaling 4.4, 3.3, and 1.9 kg ha-1, respectively. Aeration slightly increased downward movement of NO3-N, but not other nutrients in the soil. Thus mechanical aeration can be an effective tool for reducing runoff and loads of solids and nutrients after surface application of liquid manure on sloping grassland.  相似文献   
947.
Long-term field trials using lignite fly ash (LFA) were carried out in rice crops during the period 1996-2000 at Mine I, Neyveli Lignite Corporation, Tamil Nadu. LFA, being alkaline and endowed with an excellent pozzolanic nature, silt loam texture, and plant nutrients, has the potential to improve the texture, fertility, and crop productivity of mine spoil. The rice crops were the first, third, fifth, and sixth crops in rotation. The other crops, such as green gram (second) and sun hemp (fourth), were grown as green manure. For experimental trials, LFA was applied at various dosages (0, 5, 10, 20, 50, 100, and 200 t/ha), with and without press mud (10 t/ha), before cultivation of the first crop. Repeat applications of LFA were made at the same dosages in treatments of up to 50 t/ha (with and without press mud) before cultivation of the third and fifth crops. Press mud, a lightweight organic waste product from the sugar industry, was used as an organic amendment and source of plant nutrients. Also, a recommended dosage of chemical fertilizer, along with gypsum, humic acid, and biofertilizer as supplementing agents, was applied in all the treatments, including control. With one-time and repeat applications of LFA, from 5 to 20 t/ha (with and without press mud), the crop yield (grain and straw) increased significantly (p < 0.05), in the range from 3.0 to 42.0% over the corresponding control. The maximum yield was obtained with repeat applications of 20 t/ha of LFA with press mud in the third crop. The press mud enhanced the yield in the range of 1.5-10.2% with various dosages of LFA. The optimum dosage of LFA was 20 t/ha for both one-time and repeat applications. Repeat applications of LFA at lower dosages of up to 20 t/ha were more effective in increasing the yield than the corresponding one-time applications of up to 20 t/ha and repeat applications at 50 t/ha. One-time and repeat applications of LFA of up to 20 t/ha (with and without press mud), apart from increasing the yield, evinced improvement in the texture and fertility of mine spoil and the nutrient content of crop produce. Furthermore, some increase in the content of trace and heavy metals and the level of gamma-emitters in the mine spoil and crop produce was observed, but well within the permissible limits. The residual effect of LFA on succeeding crops was also encouraging in terms of eco-friendliness. Beyond 20 t/ha of LFA, the crop yield decreased significantly (p < 0.05), as a result of the formation of hardpan in the mine spoil and possibly the higher concentration of soluble salts in the LFA. However, the adverse effects of soluble salts were annulled progressively during the cultivation of succeeding crops. A plausible mechanism for the improved fertility of mine spoil and the carryover or uptake of toxic trace and heavy metals and gamma-emitters in mine spoil and crop produce is also discussed.  相似文献   
948.
Sense of place can be conceived as a multidimensional construct representing beliefs, emotions and behavioural commitments concerning a particular geographic setting. This view, grounded in attitude theory, can better reveal complex relationships between the experience of a place and attributes of that place than approaches that do not differentiate cognitive, affective and conative domains. Shoreline property owners (N=290) in northern Wisconsin were surveyed about their sense of place for their lakeshore properties. A predictive model comprising owners' age, length of ownership, participation in recreational activities, days spent on the property, extent of property development, and perceptions of environmental features, was employed to explain the variation in dimensions of sense of place. In general, the results supported a multidimensional approach to sense of place in a context where there were moderate to high correlations among the three place dimensions. Perceptions of environmental features were the biggest predictors of place dimensions, with owners' perceptions of lake importance varying in explanatory power across place dimensions.  相似文献   
949.
950.
Effects of calibration on L-THIA GIS runoff and pollutant estimation   总被引:3,自引:0,他引:3  
Urbanization can result in alteration of a watershed's hydrologic response and water quality. To simulate hydrologic and water quality impacts of land use changes, the Long-Term Hydrologic Impact Assessment (L-THIA) system has been used. The L-THIA system estimates pollutant loading based on direct runoff quantity and land use based pollutant coefficients. The accurate estimation of direct runoff is important in assessing water quality impacts of land use changes. An automated program was developed to calibrate the L-THIA model using the millions of curve number (CN) combinations associated with land uses and hydrologic soil groups. L-THIA calibration for the Little Eagle Creek (LEC) watershed near Indianapolis, Indiana was performed using land use data for 1991 and daily rainfall data for six months of 1991 (January 1-June 30) to minimize errors associated with use of different temporal land use data and rainfall data. For the calibration period, the Nash-Sutcliffe coefficient was 0.60 for estimated and observed direct runoff. The calibrated CN values were used for validation of the model for the same year (July 1-December 31), and the Nash-Sutcliffe coefficient was 0.60 for estimated and observed direct runoff. The Nash-Sutcliffe coefficient was 0.52 for January 1, 1991 to December 31, 1991 using uncalibrated CN values. As shown in this study, the use of better input parameters for the L-THIA model can improve accuracy. The effects on direct runoff and pollutant estimation of the calibrated CN values in the L-THIA model were investigated for the LEC. Following calibration, the estimated average annual direct runoff for the LEC watershed increased by 34%, total nitrogen by 24%, total phosphorus by 22%, and total lead by 43%. This study demonstrates that the L-THIA model should be calibrated and validated prior to application in a particular watershed to more accurately assess the effects of land use changes on hydrology and water quality.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号