首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15505篇
  免费   209篇
  国内免费   131篇
安全科学   471篇
废物处理   444篇
环保管理   2693篇
综合类   3518篇
基础理论   3661篇
环境理论   7篇
污染及防治   3792篇
评价与监测   723篇
社会与环境   437篇
灾害及防治   99篇
  2018年   170篇
  2017年   171篇
  2016年   234篇
  2015年   202篇
  2014年   246篇
  2013年   1207篇
  2012年   401篇
  2011年   553篇
  2010年   411篇
  2009年   517篇
  2008年   589篇
  2007年   602篇
  2006年   544篇
  2005年   416篇
  2004年   419篇
  2003年   474篇
  2002年   401篇
  2001年   515篇
  2000年   362篇
  1999年   238篇
  1998年   194篇
  1997年   167篇
  1996年   210篇
  1995年   220篇
  1994年   231篇
  1993年   220篇
  1992年   218篇
  1991年   194篇
  1990年   230篇
  1989年   209篇
  1988年   187篇
  1987年   177篇
  1986年   165篇
  1985年   191篇
  1984年   166篇
  1983年   180篇
  1982年   191篇
  1981年   193篇
  1980年   176篇
  1979年   165篇
  1978年   164篇
  1977年   140篇
  1976年   143篇
  1975年   119篇
  1974年   149篇
  1973年   130篇
  1972年   134篇
  1971年   110篇
  1970年   109篇
  1967年   116篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
671.
Winter manure application elevates nutrient losses and impairment of water quality as compared to manure applications in other seasons. In conjunction with reviewing global distribution of animal densities, we reviewed worldwide mandatory regulations and voluntary guidelines on efforts to reduce off-site nutrient losses associated with winter manure applications. Most of the developed countries implement regulations or guidelines to restrict winter manure application, which range from a regulative ban to guidelines based upon weather and field management conditions. In contrast, developing countries lack such official directives, despite an increasing animal production industry and concern over water quality. An analysis of five case studies reveals that directives are derived from a common rationale to reduce off-site manure nutrient losses, but they are also affected by local socio-economic and biophysical considerations. Successful programs combine site-specific management strategies along with expansion of manure storage to offer farmers greater flexibility in winter manure management.  相似文献   
672.
Animal studies show that exposure to the environmental pollutant 3,3′,4,4′,5-pentachlorobiphenyl (PCB126) causes alterations in hepatic metals as measured in acid-digested volume-adjusted tissue. These studies lack the detail of the spatial distribution within the liver. Here we use X-ray fluorescence microscopy (XFM) to assess the spatial distribution of trace elements within liver tissue. Liver samples from male Sprague Dawley rats, treated either with vehicle or PCB126, were formalin fixed and paraffin embedded. Serial sections were prepared for traditional H&E staining or placed on silicon nitride windows for XFM. With XFM, metal gradients between the portal triad and the central vein were seen, especially with copper and iron. These gradients change with exposure to PCB126, even reverse. This is the first report of how micronutrients vary spatially within the liver and how they change in response to toxicant exposure. In addition, high concentrations of zinc clusters were discovered in the extracellular space. PCB126 treatment did not affect their presence, but did alter their elemental makeup suggesting a more general biological function. Further work is needed to properly evaluate the gradients and their alterations as well as classify the zinc clusters to determine their role in liver function and zinc homeostasis.  相似文献   
673.
674.
I searched the National Institutes of Health MEDLINE database through January 2017 for long-term studies of morbidity and air pollution and cataloged them with respect to cardiovascular, respiratory, cancer, diabetes, hospitalization, neurological, and pregnancy-birth endpoints. The catalog is presented as an online appendix. Associations with PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm), PM10 (PM with an aerodynamic diameter <10 μm), and nitrogen dioxide (NO2) were evaluated most frequently among the 417 ambient air quality studies identified. Associations with total suspended particles (TSP), carbon, ozone, sulfur, vehicular traffic, radon, and indoor air quality were also reported. I evaluated each study in terms of pollutant significance (yes, no), duration of exposure, and publication date. I found statistically significant pollutant relationships (P < 0.05) in 224 studies; 220 studies indicated adverse effects. Among 795 individual pollutant effect estimates, 396 are statistically significant. Pollutant associations with cardiovascular indicators, lung function, respiratory symptoms, and low birth weight are more likely to be significant than with disease incidence, heart attacks, diabetes, or neurological endpoints. Elemental carbon (EC), traffic, and PM2.5 are most likely to be significant for cardiovascular outcomes; TSP, EC, and ozone (O3) for respiratory outcomes; NO2 for neurological outcomes; and PM10 for birth/pregnancy outcomes. Durations of exposure range from 60 days to 35 yr, but I found no consistent relationships with the likelihood of statistical significance. Respiratory studies began ca. 1975; studies of diabetes, cardiovascular, and neurological effects increased after about 2005. I found 72 studies of occupational air pollution exposures; 40 reported statistically significant adverse health effects, especially for respiratory conditions. I conclude that the aggregate of these studies supports the existence of nonlethal physiological effects of various pollutants, more so for non–life-threatening endpoints and for noncriteria pollutants (TSP, EC, PM2.5 metals). However, most studies were cross-sectional analyses over limited time spans with no consideration of lag or disease latency. Further longitudinal studies are thus needed to investigate the progress of disease incidence in association with air pollution exposure.

Implications: Relationships of air pollution with excess mortality are better known than with long-term antecedent morbidity. I cataloged 489 studies of cardiovascular, respiratory, cancer, and neurological effects, diabetes, and birth outcomes with respect to 12 air pollutants. About half of the studies reported statistically significant relationships, more frequently with noncriteria than with criteria pollutants. Indoor and cumulative exposures, coarse or ultrafine particles, and organic carbon were seldom considered. Significant relationships were more likely with less-severe endpoints such as blood pressure, lung function, or respiratory symptoms than with incidence of cancer, chronic obstructive pulmonary disease (COPD), heart failure, or diabetes. Most long-term studies are based on spatial relationships; longitudinal studies are needed to link the progression of pollution-related morbidity to mortality, especially for the cardiovascular system.  相似文献   

675.
Contamination of the ocean by heavy metals may have ecosystem-wide implications because they are toxic even if present in trace levels, and the relative ease of their bioaccumulation by marine organisms may affect human health, primarily through consumption of contaminated fish. We evaluated metal concentrations in six different popular edible fish species and estimated the potential health risks from consumption of contaminated fish. There was no correlation between fish length and average metal accumulation although the fish species tended to accumulate significantly more Al and Zn (P?<?0.05) than any of the other metals. Significantly higher Mn concentrations were found in fish gills compared to other body parts in all fish species. Bronze seabream, Catface rockcod, and Slinger seabream had significantly higher mean Cr concentration in the liver than in either the tissues or gills. The highest concentration of Zn in fleshy tissue was in Horse mackerel (56.71 μg g?1) followed by Bronze seabream (31.07 μg g?1). Al levels ranged from 5.6 μg g?1 in Atlantic mackerel to 35.04 μg g?1 in Horse mackerel tissue while Cu and Cr concentrations were highest in the tissues of Horse mackerel (6.83 and 1.81 μg g?1, respectively) followed by Santer seabream (3.15; 1.09 μg g?1) and Bronze seabream (3.09; 1.30 μg g?1), respectively. The highest tissue concentration of Mn was detected in Bronze seabream (8.23 μg g?1) followed by Catface rockcod (6.05 μg g?1) and Slinger seabream (5.21 μg g?1) while Pb concentrations ranged from a high of 8.44 μg g?1 in Horse mackerel to 1.09 μg g?1 in Catface rockcod. However, the estimated potential health risks from fish consumption as determined by the target hazard quotient (THQ) and hazard index (HI) were significantly lower than 1, implying that metals were not present in sufficiently high quantities to be of any health and/or food and security concern in the studied fishes.  相似文献   
676.
We present a study of the seasonal and diurnal variability of carbon monoxide and selected volatile organic compounds in the Los Angeles area. Measurements were made during four different nine-day field campaigns in April/May, September, and November, 2007, and February, 2008, at the Mt. Wilson sampling site, which is located at an elevation of approximately 1700 m in the San Gabriel Mountains overlooking Pasadena and the Los Angeles basin. The results were used to characterize the Mt. Wilson site as a representative location for monitoring integrated Los Angeles basin emissions, and, by reference to carbon monoxide emissions, to estimate average annual emissions. The considerable seasonal variability of many hydrocarbons, in both their measured mixing ratios and their relationship to carbon monoxide, was indicative of variable source strengths. Most interestingly, perturbation of C4 hydrocarbon ratios suggested an enhanced role for chlorine chemistry during the month of September, likely as the result of Los Angeles’ coastal location. Such coastal influence was confirmed by observations of enhanced mixing ratios of marine halocarbons, as well as air mass back trajectories.  相似文献   
677.
Continuous in-situ measurements of NMHCs at Mace Head, Ireland during two full annual cycles from January 2005 to January 2007 were used to investigate NMHC emission sources and transport including dilution and photochemical oxidation. The Mace Head research station is ideally located to sample a wide range of air masses including polluted European transport, clean North Atlantic and Arctic air masses and the ultra-clean, Southern Atlantic air masses. The variety in air mass sampling is used to investigate interaction of emissions, transport, dilution and photochemistry. Variability of long-lived hydrocarbon ratios is used to assess and estimate typical transport times from emission source to the Mace Head receptor. Seasonality in the ratios of isomeric alkane pairs (for butane and pentanes) are used to assess the effects of atmospheric transport and photochemical ageing. Finally, the natural logarithms of NMHC ratios are used to assess photochemical oxidation.  相似文献   
678.
A tall tower flux measurement setup was established in metropolitan Houston, Texas, to measure trace gas fluxes from emission sources in the urban surface layer. We describe a new relaxed eddy accumulation (REA) system combined with a dual-channel GC-FID used for VOC flux measurements, focusing on benzene, toluene, ethylbenzene and xylenes (BTEX) results. Ambient air sampled from 60 m above the ground next to a sonic anemometer was subsampled by a membrane pump and pushed into an REA valve system with two Teflon bag reservoirs, then transferred to two preconcentration units for thermal desorption. We discuss the performance of our system and the selected BTEX measurement results using approximately 8 weeks of data (May 22–July 22, 2008), presenting diurnal variations of concentrations and fluxes of these traffic tracers. The measured values exhibited diurnal cycles with dominant morning and midday peaks during weekdays related to rush hour traffic and additional weekday daytime toluene and xylenes emissions. Local evaporative emissions, likely from solvent usage, significantly contributed to the measured fluxes. We upscaled measured emissions to the county level using a high resolution land cover data set and compared the results with EPA’s National Emission Inventory (NEI).  相似文献   
679.
Aerosol distributions from two aircraft lidar campaigns conducted in the California Central Valley are compared in order to identify seasonal variations. Aircraft lidar flights were conducted in June 2003 and February 2007. While the ground PM2.5 (particulate matter with diameter  2.5 μm) concentration was highest in the winter, the aerosol optical depth (AOD) measured from the MODIS and lidar instruments was highest in the summer. A multiyear seasonal comparison shows that PM2.5 in the winter can exceed summer PM2.5 by 68%, while summer AOD from MODIS exceeds winter AOD by 29%. Warmer temperatures and wildfires in the summer produce elevated aerosol layers that are detected by satellite measurements, but not necessarily by surface particulate matter monitors. Temperature inversions, especially during the winter, contribute to higher PM2.5 measurements at the surface. Measurements of the mixing layer height from lidar instruments provide valuable information needed to understand the correlation between satellite measurements of AOD and in situ measurements of PM2.5. Lidar measurements also reflect the ammonium nitrate chemistry observed in the San Joaquin Valley, which may explain the discrepancy between the MODIS AOD and PM2.5 measurements.  相似文献   
680.
The Minnesota Particulate Matter 2.5 (PM2.5) Source Apportionment Study was undertaken to explore the utility of PM2.5 mass, element, ion, and carbon measurements from long-term speciation networks for pollution source attribution. Ambient monitoring data at eight sites across the state were retrieved from the archives of the Interagency Monitoring of Protected Visual Environments (IMPROVE) and the Speciation Trends Network (STN; part of the Chemical Speciation Network [CSN]) and analyzed by an Effective Variance – Chemical Mass Balance (EV-CMB) receptor model with region-specific geological source profiles developed in this study. PM2.5 was apportioned into contributions of fugitive soil dust, calcium-rich dust, taconite (low grade iron ore) dust, road salt, motor vehicle exhaust, biomass burning, coal-fired utility, and secondary aerosol. Secondary sulfate and nitrate contributed strongly (49–71% of PM2.5) across all sites and was dominant (≥60%) at IMPROVE sites. Vehicle exhausts accounted for 20–70% of the primary PM2.5 contribution, largely exceeding the proportion in the primary PM2.5 emission inventory. The diesel exhaust contribution was separable from the gasoline engine exhaust contribution at the STN sites. Higher detection limits for several marker elements in the STN resulted in non-detectable coal-fired boiler contributions which were detected in the IMPROVE data. Despite the different measured variables, analytical methods, and detection limits, EV-CMB results from a nearby IMPROVE-STN non-urban/urban sites showed similar contributions from regional sources – including fugitive dust and secondary aerosol. Seasonal variations of source contributions were examined and extreme PM2.5 episodes were explained by both local and regional pollution events.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号