首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   3篇
安全科学   1篇
废物处理   1篇
环保管理   7篇
综合类   2篇
基础理论   15篇
污染及防治   22篇
评价与监测   2篇
  2022年   2篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   8篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   5篇
  2005年   4篇
  2004年   1篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1997年   2篇
  1989年   1篇
排序方式: 共有50条查询结果,搜索用时 109 毫秒
31.
Landscape fragmentation affects wildlife population viability, in part, through the effects it has on individual dispersal. In addition, some forms of human disturbance impinge on dispersal without physically fragmenting habitats. Here, we use the term "landscape resistance" to capture constraints to dispersal that cannot be linked directly to fragmentation. The extent to which landscape resistance can influence population persistence is not well understood. Agricultural development over the past 60?years has resulted in considerable habitat fragmentation in the Riding Mountain National Park (RMNP) region in southwestern Manitoba, Canada. We examined how park boundaries, roads outside park boundaries and negative human attitudes have altered dispersal success and population persistence. We examined whether stochastic disturbance, representing infectious disease epidemics, further reduced long-term population persistence for various scenarios. Finally, we assessed whether the simultaneous occurrence of the three features had additive effects. We simulated dispersal using HexSim, a spatially explicit individual-based population model, parameterised with data on wolves (Canis lupus) in the RMNP region. Simulations that separately accounted for negative human attitudes and roads outside the park boundaries exhibited lower mean population size than those that ignored these details. Increasing deflection from park boundaries did not appear to have significant impacts. Our results did not indicate the presence of additive effects, and scenarios incorporating all three features had similar results as that of roads. Stochastic disturbance further reduced mean population size. Our results do illustrate how less-visible human disturbances (i.e. those that do not clearly alter landscape characteristics) can significantly limit dispersal and population persistence.  相似文献   
32.
ABSTRACT

Canadian particle monitoring programs examining PM10, PM2.5, and particle composition have been in operation for over 10 years. Until recently, the measurements were manual/filter-based with 24-hr sample collection varying in frequency from daily to every sixth day, using GrasebyAnderson dichotomous samplers. In the past few years, these monitoring activities have been expanded to include hourly measurements using tapered element oscillating microbalances (TEOMs). This continuous monitoring program started operation focusing on PM10, but now emphasizes PM2.5 through the addition of more TEOMs and switching of the inlets of some of the existing units. The data from all of these measurement activities show that there are broad geographical differences and also local- to regional-scale spatial differences in mass and composition of PM2.5. Due to variations in sources, significantly different PM2.5 concentrations are not uncommon within the same city. Comparison of nearby urban and rural sites indicates that 30 and 40% of the PM2.5 is from local urban sources in Montreal and Toronto, respectively. Hourly PM2.5 measurements in Toronto suggest that vehicular emissions are an important contributor to urban PM2.5. There has been a decreasing trend in urban PM2.5, with annual average concentrations between the 1987–1990 and 1993–1995 periods decreasing by 11 to 39%, depending upon the site. The largest declines were in Montreal and Halifax, and the smallest decline was in Toronto. Comparison of 24-hr TEOM and manual dichotomous sampler PM2.5 measurements from a site in Toronto indicates that the TEOM results in lower concentrations. The magnitude of this difference is relatively small in the warmer months, averaging about 12%. During the colder months the difference averages about 23%, but can be as large as 50%.  相似文献   
33.
Abstract

The purpose of this study was to derive a land-use regression model to estimate on a geographical basis ambient concentrations of nitrogen dioxide (NO2) in Montréal, Quebec, Canada. These estimates of concentrations of NO2 will be subsequently used to assess exposure in epidemiologic studies on the health effects of traffic-related air pollution. In May 2003, NO2 was measured for 14 consecutive days at 67 sites across the city using Ogawa passive diffusion samplers. Concentrations ranged from 4.9 to 21.2 ppb (median 11.8 ppb). Linear regression analysis was used to assess the association between logarithmic concentrations of NO2 and land-use variables derived using the ESRI Arc 8 geographic information system. In univariate analyses, NO2 was negatively associated with the area of open space and positively associated with traffic count on nearest highway, the length of highways within any radius from 100 to 750 m, the length of major roads within 750 m, and population density within 2000 m. Industrial land-use and the length of minor roads showed no association with NO2. In multiple regression analyses, distance from the nearest highway, traffic count on the nearest highway, length of highways and major roads within 100 m, and population density showed significant associations with NO2; the best-fitting regression model had a R2 of 0.54. These analyses confirm the value of land-use regression modeling to assign exposures in large-scale epidemiologic studies.  相似文献   
34.
Land use regression (LUR) models have been widely used to characterize the spatial distribution of urban air pollution and estimate exposure in epidemiologic studies. However, spatial patterns of air pollution vary greatly between cities due to local source type and distribution. London, Ontario, Canada, is a medium-sized city with relatively few and isolated industrial point sources, which allowed the study to focus on the contribution of different transportation sectors to urban air pollution. This study used LUR models to estimate the spatial distribution of nitrogen dioxide (NO2) and to identify local sources influencing NO2 concentrations in London, ON. Passive air sampling was conducted at 50 locations throughout London over a 2-week period in May–June 2010. NO2 concentrations at the monitored locations ranged from 2.8 to 8.9 ppb, with a median of 5.2 ppb. Industrial land use, dwelling density, distance to highway, traffic density, and length of railways were significant predictors of NO2 concentrations in the final LUR model, which explained 78% of NO2 variability in London. Traffic and dwelling density explained most of the variation in NO2 concentrations, which is consistent with LUR models developed in other Canadian cities. We also observed the importance of local characteristics. Specifically, 17% of the variation was explained by distance to highways, which included the impacts of heavily traveled corridors transecting the southern periphery of the city. Two large railway yards and railway lines throughout central areas of the city explained 9% of NO2 variability. These results confirm the importance of traditional LUR variables and highlight the importance of including a broader array of local sources in LUR modeling. Finally, future analyses will use the model developed in this study to investigate the association between ambient air pollution and cardiovascular disease outcomes, including plaque burden, cholesterol, and hypertension.

Implications: Monitoring and modeling of NO2 throughout the city of London represents an important step toward assessing air pollution health effects in a mid-sized Canadian city. The study supports the introduction of railways to LUR modeling of NO2. Railways explained approximately 9% of the variability in ambient NO2 concentrations in London, which suggests that local sources captured by land-use indicators may contribute to the efficacy of LUR models. These findings provide insights relevant to other medium and smaller sized cities with similar land use and transportation infrastructure. Furthermore, London is a central hub for medical research and treatment in southwestern Ontario, with facilities such as the Robarts Research Institute, London Regional Cancer Program (LRCP), and Stroke Prevention & Atherosclerosis Research Centre (SPARC). The models developed in this study will provide estimates of exposure for future analyses examining air pollution health effects in this data-rich population.  相似文献   
35.
36.
37.
In the last decade the concept of sustainable development has been widely embraced as the key to environmentally friendly development. However, in many instances the physical sustainability side of the equation stops at a rhetorical level and the ensuing developments fail to respond to ecological imperatives or to protect existing ecological values. Nowhere is this failure more evident than at the urban fringes of Melbourne, Australia, where residential land estate developments relentlessly engulf degraded agricultural lands that often contain the remnants of vegetative and hydrological ecological systems.

This paper postulates that while landscape design practitioners claim the 'authority of nature' (and, by extension, the land) for their design inspiration, in reality narrow practice foci and instrumental approaches have meant that the design of estates and subdivisions often make only token reference to ecological underpinnings. It is argued that instrumental influences on design decision-making are embedded in landscape-architectural professional culture and glossed over with an elusive rhetoric of care and concern for the environment. It is further postulated that individual expressions of interest in the land and its systems can make a substantive contribution to sustainable design practice and practical outcomes.  相似文献   
38.
Individuals are exposed to particulate matter from both indoor and outdoor sources. The aim of this study was to compare the relative contributions of three sources of personal exposure to fine particles (PM2.5) by using chemical tracers. The study design incorporated repeated 24-hr personal exposure measurements of air pollution from 28 cardiac-compromised residents of Toronto, Ontario, Canada. Each study participant wore the Rupprecht & Patashnick ChemPass Personal Sampling System 1 day a week for a maximum of 10 weeks. During their individual exposure measurement days the subjects reported to have spent an average of 89% of their time indoors. Particle phase elemental carbon, sulfate, and calcium personal exposure data were used in a mixed-effects model as tracers for outdoor PM2.5 from traffic-related combustion, regional, and local crustal materials, respectively. These three sources were found to contribute 13% +/- 10%, 17% +/- 16%, and 7% +/- 6% of PM2.5 exposures. The remaining fraction of the personal PM2.5 is hypothesized to be predominantly related to indoor sources. For comparison, central site outdoor PM2.5 measurements for the same dates as personal measurements were used to construct a receptor model using the same three tracers. In this case, traffic-related combustion, regional, and local crustal materials were found to contribute 19% +/- 17%, 52% +/- 22%, and 10% +/- 7%, respectively. Our results indicate that the three outdoor PM2.5 sources considered are statistically significant contributors to personal exposure to PM2.5. Our results also suggest that among the Toronto subjects, who spent a considerable amount of time indoors, exposure to outdoor PM2.5 includes a greater relative contribution from combustion sources compared with outdoor PM2.5 measurements where regional sources are the dominant contributor.  相似文献   
39.
downscaling procedures as a tool for integration of multiple air issues   总被引:1,自引:0,他引:1  
In assessing the risks associated with climate change,downscaling has proven useful in linking surfacechanges, at scales relevant to decision making, tolarge-scale atmospheric circulation derived from GCMoutput. Stochastic downscaling is related to synopticclimatology, weather-typing approaches (classifyingcirculation patterns) such as the Lamb Weather Typesdeveloped for the United Kingdom (UK), the EuropeanGrosswetterlagen (Bardossy and Plate, 1992) and thePerfect Prognosis (Perfect Prog) method from numericalweather prediction. The large-scale atmosphericcirculation is linked with site-specific observationsof atmospheric variables, such as precipitation, windspeed or temperature, within a specified region. Classifying each day by circulation patterns isachieved by clustering algorithms, fuzzy rule bases,neural nets or decision trees. The linkages areextended to GCM output to account for climate change. Stochastic models are developed from the probabilitydistributions for extreme events. Objective analysiscan be used to interpolate values of these models toother locations. The concepts and some applicationsare reviewed to provide a basis for extending thedownscaling approach to assessing the integrated riskof the six air issues: climate change, UV-B radiation,acid rain, transport of hazardous air pollutants, smogand suspended particulates.  相似文献   
40.
The Windsor, Ontario Exposure Assessment Study evaluated the contribution of ambient air pollutants to personal and indoor exposures of adults and asthmatic children living in Windsor, Ontario, Canada. In addition, the role of personal, indoor, and outdoor air pollution exposures upon asthmatic children's respiratory health was assessed. Several active and passive sampling methods were applied, or adapted, for personal, indoor, and outdoor residential monitoring of nitrogen dioxide, volatile organic compounds, particulate matter (PM; PM < or = 2.5 microm [PM2.5] and < or = 10 microm [PM10] in aerodynamic diameter), elemental carbon, ultrafine particles, ozone, air exchange rates, allergens in settled dust, and particulate-associated metals. Participants completed five consecutive days of monitoring during the winter and summer of 2005 and 2006. During 2006, in addition to undertaking the air pollution measurements, asthmatic children completed respiratory health measurements (including peak flow meter tests and exhaled breath condensate) and tracked respiratory symptoms in a diary. Extensive quality assurance and quality control steps were implemented, including the collocation of instruments at the National Air Pollution Surveillance site operated by Environment Canada and at the Michigan Department of Environmental Quality site in Allen Park, Detroit, MI. During field sampling, duplicate and blank samples were also completed and these data are reported. In total, 50 adults and 51 asthmatic children were recruited to participate, resulting in 922 participant days of data. When comparing the methods used in the study with standard reference methods, field blanks were low and bias was acceptable, with most methods being within 20% of reference methods. Duplicates were typically within less than 10% of each other, indicating that study results can be used with confidence. This paper covers study design, recruitment, methodology, time activity diary, surveys, and quality assurance and control results for the different methods used.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号