首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20898篇
  免费   259篇
  国内免费   189篇
安全科学   656篇
废物处理   847篇
环保管理   3361篇
综合类   2734篇
基础理论   5490篇
环境理论   5篇
污染及防治   5797篇
评价与监测   1336篇
社会与环境   949篇
灾害及防治   171篇
  2022年   147篇
  2021年   179篇
  2020年   123篇
  2019年   178篇
  2018年   309篇
  2017年   291篇
  2016年   474篇
  2015年   396篇
  2014年   567篇
  2013年   1813篇
  2012年   699篇
  2011年   926篇
  2010年   720篇
  2009年   851篇
  2008年   982篇
  2007年   1022篇
  2006年   887篇
  2005年   740篇
  2004年   736篇
  2003年   712篇
  2002年   700篇
  2001年   816篇
  2000年   615篇
  1999年   340篇
  1998年   280篇
  1997年   256篇
  1996年   316篇
  1995年   323篇
  1994年   289篇
  1993年   274篇
  1992年   248篇
  1991年   203篇
  1990年   238篇
  1989年   209篇
  1988年   212篇
  1987年   189篇
  1986年   165篇
  1985年   176篇
  1984年   204篇
  1983年   207篇
  1982年   203篇
  1981年   201篇
  1980年   163篇
  1979年   186篇
  1978年   128篇
  1977年   110篇
  1976年   97篇
  1975年   100篇
  1973年   97篇
  1972年   107篇
排序方式: 共有10000条查询结果,搜索用时 328 毫秒
941.
This paper describes incorporation of a human visual system model in the widely used plume visibility model PLUVUE. The results will be of interest to all involved with siting new sources for which visibility of the plume is a concern and to visibility researchers. The human visual system model allows inclusion of size and shape effects on the perceptibility of a plume. Example calculations are given for 2250- and 1600-MW power plants which show that size and shape effects can reduce the predicted perceptibility by up to a factor of three.  相似文献   
942.
Liquid manure storages are a significant source of methane (CH4) emissions. Farmers commonly agitate (stir) liquid manure prior to field application to homogenize nutrients and solids. During agitation, manure undergoes mechanical stress and is exposed to the air, disrupting anaerobic conditions. This on-farm study aimed to better understand the effects of agitation on CH4 emissions, and explore the potential for intentional agitation (three times) to disrupt the exponential increase of CH4 emissions in spring and summer. Results showed that agitation substantially increased manure temperature in the study year compared to the previous year, particularly at upper- and mid-depths of the stored manure. The temporal pattern of CH4 emissions was altered by reduced emissions over the subsequent week, followed by an increase during the second week. Microbial analysis indicated that the activity of archaea and methanogens increased after each agitation event, but there was little change in the populations of methanogens, archaea, and bacteria. Overall, CH4 emissions were higher than any of the previous three years, likely due to warmer manure temperatures that were higher than the previous years (despite similar air temperatures). Therefore, intermittent manure agitation with the frequency, duration, and intensity used in this study is not recommended as a CH4 emission mitigation practice.

Implications: The potential to mitigate methane emissions from liquid manure storages by strategically timed agitation was evaluated in a detailed farm-scale study. Agitation was conducted with readily-available farm equipment, and targeted at the early summer to disrupt methanogenic communities when CH4 emissions increase exponentially. Methane emissions were reduced for about one week after agitation. However, agitation led to increased manure temperature, and was associated with increased activity of methanogens. Overall, agitation was associated with similar or higher methane emissions. Therefore, agitation is not recommended as a mitigation strategy.  相似文献   
943.
The selection of Hue gas treatment processes in the waste-to-energy industry has generally followed the trend of the coal-fired power industry. The highly favored process for both industries is the dry scrubber (spray absorber) followed by a fabric filter. As more attention is focused upon increasingly greater efficiencies, lower outlet concentrations, heavy metals emissions, and toxic organic pollutant emissions, the advantages of wet scrubbing become more pronounced. This paper provides an objective technical and economic evaluation of selected wet scrubbing and dry scrubbing systems for a generic waste-to-energy facility. The advantages and disadvantages of wet scrubbing are discussed and translated into cost benefits or penalties.  相似文献   
944.
945.
Street sweeping is often proposed as a means of reducing the emissions from paved roads. The objective of this study was to evaluate the effectiveness of street sweeping on ambient particulate matter concentrations and to determine the difference In source contributions to PM10 concentrations between street sweeping and non-street sweeping periods.

Chemically-speciated measurements of PM10 and PM2.5 were taken in the commercial section of Reno, Nevada, for a one-month sampling period. The Chemical Mass Balance (CMB) model was applied to these data and an average of approximately 50 percent of the PM10 was apportioned to resuspended geological material. During half of the sampling period, streets In the vicinity of the sampling site were completely swept with a regenerative-air vacuum sweeper, while no sweeping was performed during the remainder of the experiment. Ratios of primary geological contributions divided by primary motor vehicle contributions to PM10 were compared between sweeping and non-sweeping periods using analysis of variance. This ratio of source contributions minimizes the effects of variations in traffic volume and meteorological dispersion. No significant differences in geological contributions to PM10 were detected as a result of regenerative-air vacuum street sweeping.  相似文献   
946.
Laboratory evaluation of the efficacy of soil phase photodegradation of recalcitrant hazardous organic components of wood treating wastes is described. The photodecomposition of anthracene, biphenyl, 9H-carbazole, m-cresol, dibenzofuran, fluorene, pentachlorophenol, phenanthrene, pyrene and quinoline under UV and visible light was monitored over a 50-day reaction period in three test soils. Methylene blue, riboflavin, hydrogen peroxide, peat moss and diethylamine soil amendments were evaluated as to their effect on the enhancement of compound photoreaction rates in the test soil systems. Dark control samples monitored over the entire study period were utilized to quantify non-photo mediated reaction losses. Compounds losses in both the dark control and irradiated samples were found to follow first order kinetics, allowing the calculation of first order photodegradation reaction rate constants for each test soil/compound combination. Degradation due to photochemical activity was observed for all test compounds, with compound photolytic half-lives ranging from 7 to approximately 180 days. None of the soil amendments were found to improve soil phase photodegradation, although photosensitization by anthracene was shown to significantly enhance the rate of photodegradation of the other test compounds. Soil type, and its characteristic of internal reflectance, proved to be the most significant factor affecting compound degradation rates suggesting the necessity for site specific assessments of soil phase photodegradation potential.  相似文献   
947.
This paper describes a laboratory project to assess the accuracy of emission and indoor air quality models to be used in predicting formaldehyde (HCHO) concentrations in residences due to pressed-wood products made with urea-formaldehyde bonding resins. The products tested were partlcleboard underlayment, hardwood- plywood paneling and medium-density fiberboard (mdf). The products were initially characterized in chambers by measuring their formaldehyde surface emission rates over a range of formaldehyde concentrations, air exchange rates and two combinations of temperature and relative humidity (23° C and 5 0% RH; 26°C and 60% RH). They were then installed in a two-room prototype house in three different combinations (underlayment flooring only; underlayment flooring and paneling; and underlayment flooring, paneling, and mdf). The equilibrium formaldehyde concentrations were monitored as a function of air exchange rate. Particleboard underlayment and mdf, but not paneling, behaved as the emission model predicted over a large concentration range, under both sets of temperature and relative humidity. Good agreement was also obtained between measured formaldehyde concentrations and those predicted by a mass-balance indoor air quality model.  相似文献   
948.
949.
This paper will focus on the demonstration of hazardous waste cleanup technologies in the field. The technologies will be at the pilot- or full-scale, and further referred to as field-scale. The main objectives of demonstration at the field-scale are development of reliable performance and cost data. Technology demonstrations provide performance, cost effectiveness, and reliability data so that potential technology users have sufficient information to make effective decisions as to the applicability of the technology to a specific situation. The demonstration and evaluation of a technology should be conducted with the purpose of characterizing performance, need for pre- and post-processing of the waste feed, identification of waste type and constituents applicable to the technology, system throughput, problems and limitations of the technology, and operating and maintenance costs. Table I provides a summary of remediation activities for demonstration projects.  相似文献   
950.
Carbon dioxide emissions, on an equivalent energy basis, were calculated for 504 North American coals to explore the effects of coal rank and sulfur content on CO2 emissions. The data set included coals ranging in rank from lignite through low-volatile bituminous from 15 U.S. states and Alberta, Canada. Carbon dioxide emissions were calculated from the carbon content and gross calorific value of each coal. The lowest CO2 emissions are calculated for the high-volatile bituminous coals (198 to 211 lbs CO2/MMBtu) and the highest for lignites and subbituminous coals (209 to 224 lbs CO2/MMBtu). The lower CO2 emissions from the high-volatile bituminous coals result in part from their generally higher sulfur content. However, even at equivalent sulfur contents the high-volatile bituminous coals give lower CO2 emissions than the lower-rank coals. On average, the lowerrank coals produce 5 percent more CO2 upon combustion than the highvolatile bituminous coals, on the basis of gross calorific value. This difference increases to 9 percent on the basis of estimated net calorific value. The net calorific value is better indicator of power plant energy production than the gross calorific value. The difference in CO2 emissions resulting from the use of high-volatile bituminous coals and lower-rank coals is of the same order of magnitude as reductions expected from near-term combustion efficiency improvements. These results are useful to those interested in current and future CO2 emissions resulting from coal combustion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号