全文获取类型
收费全文 | 18936篇 |
免费 | 5384篇 |
国内免费 | 5795篇 |
专业分类
安全科学 | 3133篇 |
废物处理 | 480篇 |
环保管理 | 1653篇 |
综合类 | 14595篇 |
基础理论 | 3725篇 |
环境理论 | 1篇 |
污染及防治 | 2795篇 |
评价与监测 | 1241篇 |
社会与环境 | 1564篇 |
灾害及防治 | 928篇 |
出版年
2025年 | 4篇 |
2024年 | 707篇 |
2023年 | 961篇 |
2022年 | 1588篇 |
2021年 | 1504篇 |
2020年 | 1610篇 |
2019年 | 1140篇 |
2018年 | 1197篇 |
2017年 | 1390篇 |
2016年 | 1168篇 |
2015年 | 1309篇 |
2014年 | 1224篇 |
2013年 | 1565篇 |
2012年 | 1741篇 |
2011年 | 1738篇 |
2010年 | 1498篇 |
2009年 | 1401篇 |
2008年 | 1379篇 |
2007年 | 1311篇 |
2006年 | 1251篇 |
2005年 | 958篇 |
2004年 | 715篇 |
2003年 | 591篇 |
2002年 | 488篇 |
2001年 | 396篇 |
2000年 | 407篇 |
1999年 | 237篇 |
1998年 | 130篇 |
1997年 | 87篇 |
1996年 | 86篇 |
1995年 | 58篇 |
1994年 | 61篇 |
1993年 | 48篇 |
1992年 | 51篇 |
1991年 | 20篇 |
1990年 | 20篇 |
1989年 | 13篇 |
1988年 | 19篇 |
1986年 | 8篇 |
1984年 | 5篇 |
1983年 | 2篇 |
1982年 | 8篇 |
1981年 | 3篇 |
1978年 | 6篇 |
1975年 | 1篇 |
1974年 | 1篇 |
1973年 | 1篇 |
1972年 | 3篇 |
1971年 | 2篇 |
1970年 | 1篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
221.
以餐饮企业的熟食操作间为例建立物理模型,通过CFD方法模拟不同空间阻塞度下天然气泄漏爆炸情形。研究结果表明:阻塞率在99.95%~100%时,燃气浓度呈现反抛物线式上升。空间阻塞率在99.982%时(开敞面积1 m2),泄漏1 200 s,熟食操作间燃气浓度值可达6%;空间阻塞率在99.955%(开敞面积2.5 m2)~100%时,燃气爆炸后熟食操作间内产生的超压最大值均大于30 kPa;当空间阻塞率在99.991%(开敞面积0.5 m2)~100%时,设定工况下爆炸超压随空间阻塞率呈指数式增加。研究认为,空间阻塞率在99.95%以上,燃气泄漏极易形成可燃蒸汽云,发生爆炸产生冲击波超压能够毁坏建筑物,在生产和生活中,对于有燃气使用的空间,应尽可能降低空间阻塞率,以避免可能的燃气泄漏形成危险域和爆炸形成过高冲击波超压。 相似文献
222.
建立了过氧化聚吡咯(OPPy)和聚乙烯吡咯烷酮(PVP)修饰碳糊电极测定废水中苯酚的方法.优化了试验条件,苯酚的氧化峰电流在1.0×10-5 mol/L~1.0×10-3 mol/L之间线性关系良好,检出限为1.0×10-6 mol/L.该电极制作简单,选择性好,测定灵敏度高,精密度与准确度均符合要求. 相似文献
223.
在双搅拌反应釜中研究了位阻胺2-氨基-2-甲基-1-丙醇(AMP)与甘氨酸钠(SG)混合溶液吸收CO2的性能.实验温度293~313K,混合溶液的浓度为AMP(1.5kmol/m3)+SG (0.2,0.4,0.6,0.8kmol/m3),SG浓度每增加0.2kmol/m3,200min内的平均吸收速率分别提高11.47%,10.07%,9.18%和5.33%.与AMP单一溶液相比,混合溶液在200 min时的吸收容量增加了11.5%~41.1%.在293~313K,吸收速率随温度上升而提高.使用加热的方法进行再生实验,得到1.5 kmol/m3 AMP + 0.6 kmol/m3 SG混合液的最适再生温度为378K.AMP + SG混合溶液的再生效率高于单一SG溶液及AMP + MEA/DEA混合溶液. 相似文献
224.
采用强化混凝和高级氧化法对制药废水生化出水进行深度处理,比较了不同混凝剂、不同氧化方法(包括Na2S2O8氧化、电化学氧化、Fenton/类Fenton氧化)的处理效果。实验结果表明:经聚合硫酸铁与聚丙烯酰胺强化混凝处理后,废水的COD去除率达18.5%;强化混凝与不同氧化方法联用均可使废水脱色至无色,COD去除率达70.1%~92.4%。强化混凝—电化学氧化组合工艺的出水COD为27.1 mg/L,达到GB 8978—1996《污水综合排放标准》一级标准限值要求,且成本较低,适于实际应用。 相似文献
225.
2007年6月13日至2008年5月29日期间,对南京大气中PM2.5进行了连续采样,并利用电感耦合等离子体质谱分析法测定了PM2.5中K、Al、Ca、Pb等30种元素的质量浓度,对比分析了这些元素在霾日与非霾日的污染特征.结果表明,PM2.5污染水平较高,年质量浓度均值达103μg/m3.霾日PM2.5质量浓度水平是非霾日的2.35倍.春季霾日前后PM2.5中元素变化特征不明显,秋冬季节霾日元素浓度基本大于非霾日.平均而言,整个采样期间Cu、Se、Hg、Bi等人为污染元素的富集因子均较高,且霾日明显大于非霾日.因子分析结果表明,南京市霾日PM2.5主要来源于土壤尘、冶金化工尘、化石燃料燃烧、垃圾焚烧及建筑扬尘,贡献率依次为29.21%、20.15%、27.15%、7.09%和5.10%. 相似文献
226.
为揭示成渝地区大气复合污染成因,选择乡村点资阳站的冬季,实测了颗粒物数浓度及其粒径谱分布、云凝结核(CCN),在二氧化硫、光解速率(JO1D)实测值基础上估算了新粒子生成的重要前体物气态硫酸的浓度.2012年12月5日到2013年1月5日观测期间,3~582nm颗粒物数浓度水平较高,平均值为(16072±9713)cm-3.颗粒物数谱分布呈现以积聚模态为主体的特征,占总颗粒物数浓度的46%,此比值高于我国北京、上海、广州等城市和珠江三角洲及长江三角洲的乡村点和背景点.在较高颗粒物凝结汇(CS)水平下[(4.3±3.6)×10-2s-1],甄别出7次新粒子生成(NPF)事件,占观测天数的23%.NPF事件发生时,颗粒物生成速率与增长速率分别为(5.2±1.4)cm-3s-1,(3.6±2.5)nm/h. NPF事件对CCN数浓度有明显贡献,NPF发生后CCN数浓度平均增长19%. 相似文献
227.
对受重金属污染较重、综合治理历史较长的京杭大运河杭州段沉积物剖面中重金属的垂向分布、整河段沉积物重金属污染程度和潜在生态风险及重金属的存在形态进行了分析讨论.结果表明,经过长期综合治理,运河杭州段沉积物中重金属的污染程度明显下降,新近沉积物重金属含量明显低于60cm深度以下的重金属含量,但沉积物整体污染水平仍较高,Cd是运河杭州段沉积物中生态危害潜力最大的元素,形态分析表明沉积物中重金属的活动性为Cd > Zn > Cu > Pb. 相似文献
228.
通过改变内循环生物流化床的启动水质,提高N/C组成以强化流化床后期的硝化作用.结果表明,高N/C和低进水COD强化启动后处理生活污水,在HRT为2h时,可以同时高效去除COD和氨氮,氨氮的平均去除率为74%.耗氧速率试验表明,强化启动后,流化床中生物膜的异养菌活性大幅度降低,氨氧化细菌活性明显提高,硝化细菌活性变化不大.对反应系统微生物醌进行的跟踪分析表明,强化启动后,生物膜中的硝化细菌数量明显增加,微生物种群的分布均匀性变化较小,以革兰氏阴性菌为主.扫描电镜观察显示,低N/C启动条件下,生物膜厚且致密,异养菌所占比例高;高N/C启动条件有利于硝化细菌的生长,生物膜相对稀薄. 相似文献
229.
超高效螺旋式厌氧生物反应器流态研究 总被引:1,自引:0,他引:1
在冷态模拟条件下,采用脉冲刺激响应技术,运用轴向扩散模型和多釜全混流反应器串联模型研究了超高效螺旋式厌氧反应器的流态.结果表明:低负荷下超高效螺旋式厌氧反应器的流态趋于平推流(分散数D/uL0.2,串联级数N→∞);超高负荷下流态趋于全混流(D/uL≥0.2,N→1).反应器内总死区平均值为27.99%,其中,生物死区平均值为6.98%,水力死区平均值为21.01%.水力死区(Vh)与容积水力负荷(L)和容积产气速率(G)之间满足关系式:Vh=0.7603L+0.1627G-4.0620,容积产气速率对水力死区的影响大于容积水力负荷.超高效螺旋式厌氧反应器流态的适宜范围相当于等容多釜串联级数N≤3.01.最后提出了兼顾反应器传质效果和容积效能的控制措施. 相似文献
230.
为了解同步短程硝化内源反硝化除磷(SPNDPR)系统的脱氮除磷特性,以低C/N城市污水为处理对象,采用延时厌氧(180 min)/好氧运行的SBR反应器,通过联合调控曝气量和好氧时间,考察了该系统启动与优化运行特性.结果表明,当系统好氧段曝气量为0. 8 L·min~(-1),好氧时间为150 min时,出水PO_4~(3-)-P浓度约为1. 5 mg·L~(-1)左右,出水NH_4~+-N和NO_3~--N浓度由10. 28 mg·L~(-1)和8. 14 mg·L~(-1)逐渐降低至0 mg·L~(-1)和2. 27 mg·L~(-1),出水NO_2~--N浓度逐渐升高至1. 81 mg·L~(-1);当曝气量提高至1. 0 L·min~(-1)且好氧时间缩短至120min后,系统除磷、短程硝化性能逐渐增强,但总氮(TN)去除性能先降低后逐渐升高,最终出水PO_4~(3-)-P、NH_4~+-N分别稳定低于0. 5 mg·L~(-1)和1. 0 mg·L~(-1),好氧段亚硝积累率和SND率分别达98. 65%和44. 20%,TN去除率达79. 78%. SPNDPR系统内好氧段好氧吸磷、反硝化除磷、短程硝化、内源反硝化同时进行保证了低C/N污水的同步脱氮除磷. 相似文献