首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   999篇
  免费   42篇
  国内免费   441篇
安全科学   58篇
废物处理   75篇
环保管理   71篇
综合类   500篇
基础理论   209篇
环境理论   1篇
污染及防治   457篇
评价与监测   53篇
社会与环境   22篇
灾害及防治   36篇
  2023年   20篇
  2022年   42篇
  2021年   39篇
  2020年   34篇
  2019年   31篇
  2018年   35篇
  2017年   36篇
  2016年   54篇
  2015年   63篇
  2014年   93篇
  2013年   96篇
  2012年   83篇
  2011年   94篇
  2010年   75篇
  2009年   76篇
  2008年   98篇
  2007年   49篇
  2006年   59篇
  2005年   35篇
  2004年   35篇
  2003年   44篇
  2002年   51篇
  2001年   30篇
  2000年   31篇
  1999年   29篇
  1998年   36篇
  1997年   23篇
  1996年   30篇
  1995年   19篇
  1994年   7篇
  1993年   6篇
  1992年   8篇
  1991年   8篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1983年   3篇
排序方式: 共有1482条查询结果,搜索用时 296 毫秒
231.
Improving eco-efficiency is propitious for saving resources and reducing emissions, and has become a popular route to sustainable development. We define two energy-related eco-efficiencies: energy efficiency (ENE) and greenhouse gas (GHG) emission-related eco-efficiency (GEE) using energy consumption and the associated GHG emissions as the environmental impacts. Using statistical data, we analyze China??s energy consumption and GHG emissions by industrial subsystem and sector, and estimate the ENE and GEE values for China in 2007 as 4.871×107 US$/PJ and 4.26×108 US$/TgCO2eq, respectively. Industry is the primary contributing subsystem of China??s economy, contributing 45.2% to the total economic production, using 79.6% of the energy consumed, and generating 91.4% of the total GHG emissions. We distinguish the individual contributions of the 39 industrial sectors to the national economy, overall energy consumption, and GHG emissions, and estimate their energyrelated eco-efficiencies. The results show that although ferrous metal production contributes only 3.5% to the national industrial economy, it consumes the most industrial energy (20% of total), contributes 16% to the total industrial global warming potential (GWP), and ranks third in GHG emissions. The power and heat sector ranks first in GHG emissions and contributes one-third of the total industrial GWP, although it only consumes about 8% of total industrial energy and, like ferrous metal production, contributes 3.5% to the national economy. The ENE of the ferrous metal and power and heat sectors are only 8 and 2.1×107 US$/PJ, while the GEE for these two sectors are 9 and 4×104 US$/GgCO2eq, respectively; these are nearly the lowest ENE and GEE values among all 39 industry sectors. Finally, we discuss the possibility of ecoefficiency improvement through a comparison with other countries.  相似文献   
232.
To determine the incidence of organochlorine pesticides (OCPs) in soil in a rapid urbanization region, soil samples from various land use types in Shenzhen were collected in winter, 2007. The concentration of dichlorodiphenyltrichloroethanes (DDTs) and hexachlorocyclohexanes (HCHs) ranged from non-detected to 149 ng g(-1) and 19 to 88 ng g(-1), respectively. The highest levels of OCPs were observed in soil from traffic and industry areas, reflecting that intensive human disturbance make the soil pollution accumulation more disperse. HCHs and DDTs profiles revealed that the sources were associated mainly with lindane and technical DDTs, respectively, while HCHs in the soil of Shenzhen might originate from both recent and historical sources. The loss of OCPs by soil erosion will enter surface runoff and impose impact on the water environment. Non-dietary exposure estimation indicates that children were the most sensitive group. The average daily exposure to OCPs for males was more serious than for females. Non-dietary exposure to DDTs and HCHs in residential blocks of Shenzhen were far below the acceptable daily intake recommended by the Food and Agriculture Organization/World Health Organization.  相似文献   
233.
The transport behaviors of a suite of contaminants released from electronic waste (e-waste) recycling operations, including polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), and heavy metals, were evaluated by analyzing the contaminant residues in surface soils sampled in the surrounding area of an e-waste recycling site in South China. Concentrations of PBDEs and PCBs in the soil samples ranged from 0.565 to 2908 ng g(-1) dw and from 0.267 to 1891 ng g(-1) dw, respectively, while soil residues were 0.082-2.56, 3.22-287, and 16.3-162 μg g(-1) dw for Cd, Cu, and Pb, respectively. Concentrations of PBDEs and PCBs in soil decreased with increasing distance from the source of pollution, indicating possible PBDE and PCB contamination in the surrounding areas due to the short-range transport of these compounds from the e-waste recycling site. Although no significant difference in the short-range transport potential among PBDE and PCB congeners was observed, reductions in concentrations of the highly-brominated-BDEs and highly-chlorinated-CBs were slightly quicker than those of their less-halogen-substituted counterparts. Conversely, heavy metals showed the lowest transport potential due to their low vapor pressure, and results showed metals would remain near the pollution source instead of diffusing into the surrounding areas. Finally, mass inventories in areas near the e-waste site were 0.920, 0.134, 0.860, 4.68, 757, and 673 tons for BDE209, PBDEs (excluding BDE209), PCBs, Cd, Cu, and Pb, respectively.  相似文献   
234.
Our previous study indicated that the current level of polycyclic aromatic hydrocarbons (PAHs) in Shenzhen soil is in the low-end of world soil PAH pollution. In this study, the fate of PAHs in the soil of Shenzhen was investigated. The mass inventories of Σ(27)PAHs and Σ(15)PAHs (defined as the sum of the 27 or 15 PAH compounds sought) in topsoil of Shenzhen were ~204 and ~152 metric tons, respectively. Fate estimation of Σ(15)PAHs shows that air-soil gaseous exchange is the primary environmental process with ~10,076 kg/year diffusing from soil to air. Rain washing (~1131 kg/year from air to soil) is the most important input pathway followed by wet (~17 kg/year) and dry deposition (~8 kg/year) to soils in Shenzhen. The transport of Σ(15)PAHs by soil erosion is a crucial loss process for soil PAHs in Shenzhen (1918 kg/year for water runoff and 657 kg/year for solid runoff from soil). Moreover, degradation is not ignorable at present (95 kg/year). Comparison of inventory and residue (defined as Σ(15)PAHs left in topsoils after all environmental loss processes) suggested that input and loss of high molecular weight PAHs for Shenzhen's soil reached apparent equilibrium. Soil PAH pollution in Shenzhen will stay in a quasi-steady state for a long period and the natural environmental processes can not significantly reduce the pollution.  相似文献   
235.
The atmospheric chemical mechanism is an essential component of airshed models used for investigating the chemical behaviors and impacts of species. Since the first tropospheric chemical mechanism was proposed in the 1960s, various mechanisms including Master Chemical Mechanism (MCM), Carbon Bond Mechanism (CBM), Statewide Air Pollution Research Center (SAPRC) and Regional Atmospheric Chemistry Mechanism (RACM) have been developed for different research purposes. This work summarizes the development and applications of these mechanisms, introduces their compositions and lumping methods, and compares the ways the mechanisms treat radicals with box model simulations. CBM can reproduce urban pollution events with relatively low cost compared to SAPRC and RACM, whereas the chemical behaviors of radicals and the photochemical production of ozone are described in detail in RACM. The photolysis rates of some oxygenated compounds are low in SAPRC07, which may result in underestimation of radical levels. As an explicit chemical mechanism, MCM describes the chemical processes of primary pollutants and their oxidation products in detail. MCM can be used to investigate certain chemical processes; however, due to its large size, it is rarely used in regional model simulations. A box model case study showed that the chemical behavior of OH and HO2 radicals and the production of ozone were well described by all mechanisms. CBM and SAPRC underestimated the radical levels for different chemical treatments, leading to low ozone production values in both cases. MCM and RACM are widely used in box model studies, while CBM and SAPRC are often selected in regional simulations.  相似文献   
236.
• AO7 degradation was coupled with anaerobic methane oxidation. • Higher concentration of AO7 inhibited the degradation. • The maximum removal rate of AO7 reached 280 mg/(L·d) in HfMBR. • ANME-2d dominated the microbial community in both batch reactor and HfMBR. • ANME-2d alone or synergistic with the partner bacteria played a significant role. Azo dyes are widely applied in the textile industry but are not entirely consumed during the dyeing process and can thus be discharged to the environment in wastewater. However, azo dyes can be degraded using various electron donors, and in this paper, Acid Orange 7 (AO7) degradation performance is investigated using methane (CH4) as the sole electron donor. Methane has multiple sources and is readily available and inexpensive. Experiments using 13C-labeled isotopes showed that AO7 degradation was coupled with anaerobic oxidation of methane (AOM) and, subsequently, affected by the initial concentrations of AO7. Higher concentrations of AO7 could inhibit the activity of microorganisms, which was confirmed by the long-term performance of AO7 degradation, with maximum removal rates of 8.94 mg/(L·d) in a batch reactor and 280 mg/(L·d) in a hollow fiber membrane bioreactor (HfMBR). High-throughput sequencing using 16S rRNA genes showed that Candidatus Methanoperedens, affiliated to ANME-2d, dominated the microbial community in the batch reactor and HfMBR. Additionally, the relative abundance of Proteobacteria bacteria (Phenylobacterium, Pseudomonas, and Geothermobacter) improved after AO7 degradation. This outcome suggested that ANME-2d alone, or acting synergistically with partner bacteria, played a key role in the process of AO7 degradation coupled with AOM.  相似文献   
237.
湖泊富营养化模型的研究进展   总被引:1,自引:0,他引:1  
湖泊的富营养化是全球普遍关注的环境问题之一.湖泊的富营养化模型是防治、修复和治理湖泊富营养化的重要决策工具.按研究的侧重点不同,将湖泊富营养化模型分为简单回归模型、水质模型、生态模型和生态-水动力水质模型,并分别回顾了四类模型的研究进展.最后指出湖泊富营养化模型的发展趋势,强调不确定理论、3S技术、耦合模型是今后湖泊富营养化模型研究的重点,应在此基础上建立通用的模拟、预测、评价和优化模型,为湖泊富营养化管理提供科学依据.  相似文献   
238.
Journal of Polymers and the Environment - In this study, carboxymethyl chitosan with gum Arabic (CG) based novel functional films containing Cinnamomum camphora seeds extract (CCSE) at varying...  相似文献   
239.
对有机质浓度高,成分单一,蛋白质、总氮浓度较高,易酸化,且已酸化程度较高的大豆蛋白废水,确定以新型内循环厌氧反应池为主的处理工艺,在原废水ρ(COD)为11809~15040mg/L时,总出水浓度192~350mg/L,去除率达到96.2%~97.5%。新的内循环厌氧反应池具有高度小、结构简单、污染物去除率高的特征,COD运行负荷达6.0~7.5kg/(m3.d),COD去除率达88%~93%。当COD运行负荷5.0~7.0kg/(m3.d)时,该池内循环管道形成了连续的较强内回流。  相似文献   
240.
Pollution havens and industrial agglomeration   总被引:3,自引:0,他引:3  
This paper examines the pollution haven hypothesis using a spatial-economy model of two countries and two sectors. The manufacturing sector generates cross-border pollution which reduces cross-sectoral productivity of agricultural goods, and lowers local income. We derive a demand-reducing effect that discourages firms to move to the country with laxer environmental regulations, in the absence of any comparative advantage. Our analysis also demonstrates that manufacturing agglomeration forces can alleviate the pollution-haven effect: a pollution haven may not arise if environmental regulation is slightly more stringent in the larger country.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号