首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16342篇
  免费   170篇
  国内免费   126篇
安全科学   400篇
废物处理   718篇
环保管理   1869篇
综合类   2606篇
基础理论   4467篇
环境理论   6篇
污染及防治   4336篇
评价与监测   1132篇
社会与环境   1010篇
灾害及防治   94篇
  2022年   149篇
  2021年   123篇
  2020年   112篇
  2019年   117篇
  2018年   222篇
  2017年   261篇
  2016年   366篇
  2015年   291篇
  2014年   501篇
  2013年   1267篇
  2012年   538篇
  2011年   771篇
  2010年   656篇
  2009年   613篇
  2008年   721篇
  2007年   783篇
  2006年   634篇
  2005年   538篇
  2004年   545篇
  2003年   531篇
  2002年   516篇
  2001年   656篇
  2000年   480篇
  1999年   263篇
  1998年   175篇
  1997年   210篇
  1996年   210篇
  1995年   239篇
  1994年   236篇
  1993年   182篇
  1992年   195篇
  1991年   184篇
  1990年   203篇
  1989年   187篇
  1988年   151篇
  1987年   162篇
  1986年   153篇
  1985年   156篇
  1984年   148篇
  1983年   141篇
  1982年   125篇
  1981年   120篇
  1980年   115篇
  1979年   124篇
  1978年   100篇
  1977年   113篇
  1975年   87篇
  1974年   87篇
  1973年   96篇
  1972年   86篇
排序方式: 共有10000条查询结果,搜索用时 359 毫秒
811.
Interdisciplinarity is needed to gain knowledge of the ecology of invasive species and invaded ecosystems, and of the human dimensions of biological invasions. We combine a quantitative literature review with a qualitative historical narrative to document the progress of interdisciplinarity in invasion science since 1950. Our review shows that 92.4% of interdisciplinary publications (out of 9192) focus on ecological questions, 4.4% on social ones, and 3.2% on socialecological ones. The emergence of invasion science out of ecology might explain why interdisciplinarity has remained mostly within the natural sciences. Nevertheless, invasion science is attracting social–ecological collaborations to understand ecological challenges, and to develop novel approaches to address new ideas, concepts, and invasion-related questions between scholars and stakeholders. We discuss ways to reframe invasion science as a field centred on interlinked social–ecological dynamics to bring science, governance and society together in a common effort to deal with invasions.  相似文献   
812.
This work was aimed at studying the response of soil non-spore-forming actinobacterial strain Arthrobacter agilis Lush 13 to changing natural conditions, such as nutrient availability and the presence of degradable and recalcitrant aliphatic and aromatic substrates. The A. agilis strain Lush13 was able to degrade octane, nonane, hexadecane, benzoate, phenol, and 2,3-, 2,4-, 2,5-, 2,6-dichlorophenols, but not grew on 3,4-dichlorophenol, 2,3,4-, 2,4,5-, 2,4,6-trichlorophenol (TCP), pentachlorophenol (PCP), 2-chlorobenzoate, 3-chlorobenzoate, 3,5-dichlorobenzoate, 2,4-dichlorobenzoate. Under growth-arresting conditions due to nitrogen- or multiple starvation or recalcitrant (non-utilizable) carbon source, the studied strain preserved viability for prolonged periods (4–24 months) due to transition to dormancy in the form of conglomerated small and ultrasmall cyst-like dormant cells (CLC). Dormant cells were shown to germinate rapidly (30 min or later) after removal of starvation stress, and this process was followed by breakdown of conglomerates with the eliberation and further division of small multiple actively growing daughter cells. Results of this study shed some light to adaptive capabilities of soil arthrobacters in pure and polluted environments.  相似文献   
813.
Design and redesign of water quality monitoring networks were evaluated for two similarly sized watersheds in the tropical Andes via optimization techniques using geographic information system technology (GIS) and a matter-element analysis of 5-day biological oxygen demand (BOD5) and total suspended solids (TSS). This resulted in a flexible, objectively based design for a 1128-km2 watershed without prior water quality data (La Miel River), and a network redesign of a 1052-km2 watershed with historical water quality monitoring (Chinchiná River). Monitoring design for the undocumented basin incorporated mathematical expressions for physical, anthropological, and historical factors—and was based on clear objectives for diagnosis and intervention of water pollution. Network redesign identified network redundancy, which resulted in a 64% reduction in the number of water quality monitoring stations along the channel, and a 78% reduction of stations throughout the basin. Most tropical drainage basins throughout the world have little to no prior water quality data. But even in well-studied drainage basins like the Chinchiná River, which is among the most thoroughly studied basins in Colombia, redesign of historical and existing monitoring networks will become a standard tool to advance the restoration of polluted surface waters, not only in Colombia, but also throughout the world.  相似文献   
814.

Open-air burning of agricultural wastes from crops like corn, rice, sorghum, sugar cane, and wheat is common practice in Mexico, which in spite limiting regulations, is the method to eliminate such wastes, to clear the land for further harvesting, to control grasses, weeds, insects, and pests, and to facilitate nutrient absorption. However, this practice generates air pollution and contributes to the greenhouse effect. Burning of straws derived from the said crops was emulated in a controlled combustion chamber, hence determining emission factors for particles, black carbon, carbon dioxide, carbon monoxide, and nitric oxide throughout the process, which comprised three apparent stages: pre-ignition, flaming, and smoldering. In all cases, maximum particle concentrations were observed during the flaming stage, although the maximum final contributions to the particle emission factors corresponded to the smoldering stage. The comparison between particle size distributions (from laser spectrometer) and black carbon (from an aethalometer) confirmed that finest particles were emitted mainly during the flaming stage. Carbon dioxide emissions were also highest during the flaming stage whereas those of carbon monoxide were highest during the smoldering stage. Comparing the emission factors for each straw type with their chemical analyses (elemental, proximate, and biochemical), some correlations were found between lignin content and particle emissions and either particle emissions or duration of the pre-ignition stage. High ash or lignin containing-straw slowed down the pre-ignition and flaming stages, thus favoring CO oxidation to CO2.

  相似文献   
815.
Regional Environmental Change - Mountain ecosystems provide key services to a large portion of the population in the tropics. However, they are particularly vulnerable to regional environmental...  相似文献   
816.
Regional Environmental Change - Replacement of conventional energy sources with renewables such as solar panels and wind turbines requires adequate land. Impact assessments should be conducted to...  相似文献   
817.
Regional Environmental Change - In addition to periodic long-term drought, much of Central America experiences a rainy season with two peaks separated by a dry period of weeks to over a month in...  相似文献   
818.
Greening flood protection (GFP) is increasingly recognized as an adaptive and flexible approach to water management that is well suited to addressing uncertain futures associated with climate change. In the last decade, GFP knowledge and policies have developed rapidly, but implementation has been less successful and has run into numerous barriers. In this paper, we address the challenge of realizing green flood protection goals by specifically considering knowledge in the decision-making of a Dutch flood protection project in Lake Markermeer. In this project, an ecological knowledge arrangement and a traditional flood protection knowledge arrangement are compared and their interactions analysed. The analysis provides insight into the specific difficulties of implementing GFP measures and identifies ways to realize GFP goals. The primary challenge is twofold: First, a self-reinforcing cycle of knowledge production and decision-making in the flood protection domain inhibits the introduction of innovative and multifunctional approaches such as GFP; second, the distribution of power is severely unbalanced in terms of ecological enhancement and flood protection, favouring the latter. Implementation of GFP requires structural change and the integration of ecological and flood protection knowledge and policy. Potentially rewarding routes towards this integration are the exploration of shared interests in GFP and the creation of mutual dependency between knowledge arrangements. The case study and the insights it provides show that GFP is far from mainstream practice and that implementation requires serious effort and courage to break with historical practices.  相似文献   
819.
The sources of submicrometer particulate matter (PM1) remain poorly characterized in the industrialized city of Houston, TX. A mobile sampling approach was used to characterize PM1 composition and concentration across Houston based on high-time-resolution measurements of nonrefractory PM1 and trace gases during the DISCOVER-AQ Texas 2013 campaign. Two pollution zones with marked differences in PM1 levels, character, and dynamics were established based on cluster analysis of organic aerosol mass loadings sampled at 16 sites. The highest PM1 mass concentrations (average 11.6 ± 5.7 µg/m3) were observed to the northwest of Houston (zone 1), dominated by secondary organic aerosol (SOA) mass likely driven by nighttime biogenic organonitrate formation. Zone 2, an industrial/urban area south/east of Houston, exhibited lower concentrations of PM1 (average 4.4 ± 3.3 µg/m3), significant organic aerosol (OA) aging, and evidence of primary sulfate emissions. Diurnal patterns and backward-trajectory analyses enable the classification of airmass clusters characterized by distinct PM sources: biogenic SOA, photochemical aged SOA, and primary sulfate emissions from the Houston Ship Channel. Principal component analysis (PCA) indicates that secondary biogenic organonitrates primarily related with monoterpenes are predominant in zone 1 (accounting for 34% of the variability in the data set). The relevance of photochemical processes and industrial and traffic emission sources in zone 2 also is highlighted by PCA, which identifies three factors related with these processes/sources (~50% of the aerosol/trace gas concentration variability). PCA reveals a relatively minor contribution of isoprene to SOA formation in zone 1 and the absence of isoprene-derived aerosol in zone 2. The relevance of industrial amine emissions and the likely contribution of chloride-displaced sea salt aerosol to the observed variability in pollution levels in zone 2 also are captured by PCA.

Implications: This article describes an urban-scale mobile study to characterize spatial variations in submicrometer particulate matter (PM1) in greater Houston. The data set indicates substantial spatial variations in PM1 sources/chemistry and elucidates the importance of photochemistry and nighttime oxidant chemistry in producing secondary PM1. These results emphasize the potential benefits of effective control strategies throughout the region, not only to reduce primary emissions of PM1 from automobiles and industry but also to reduce the emissions of important secondary PM1 precursors, including sulfur oxides, nitrogen oxides, ammonia, and volatile organic compounds. Such efforts also could aid in efforts to reduce mixing ratios of ozone.  相似文献   

820.
In south-central Chile, wood stoves have been identified as an important source of air pollution in populated areas. Eucalyptus (Eucalyptus globulus), Chilean oak (Nothofagus oblique), and mimosa (Acacia dealbata) were burned in a single-chamber slow-combustion wood stove at a controlled testing facility located at the University of Concepción, Chile. In each experiment, 2.7–3.1 kg of firewood were combusted while continuously monitoring temperature, exhaust gases, burn rate, and collecting particulate matter samples in Teflon filters under isokinetic conditions for polycyclic aromatic hydrocarbon and levoglucosan analyses. Mean particulate matter emission factors were 2.03, 4.06, and 3.84 g/kg dry wood for eucalyptus, oak, and mimosa, respectively. The emission factors were inversely correlated with combustion efficiency. The mean emission factors of the sums of 12 polycyclic aromatic hydrocarbons in particle phases were 1472.5, 2134.0, and 747.5 μg/kg for eucalyptus, oak, and mimosa, respectively. Fluoranthene, pyrene, benzo[a]anthracene, and chrysene were present in the particle phase in higher proportions compared with other polycyclic aromatic hydrocarbons that were analyzed. Mean levoglucosan emission factors were 854.9, 202.3, and 328.0 mg/kg for eucalyptus, oak, and mimosa, respectively. Since the emissions of particulate matter and other pollutants were inversely correlated with combustion efficiency, implementing more efficient technologies would help to reduce air pollutant emissions from wood combustion.

Implications: Residential wood burning has been identified as a significant source of air pollution in populated areas. Local wood species are combusted for home cooking and heating, which releases several toxic air pollutants, including particulate matter, carbon monoxide, and polycyclic aromatic hydrocarbons. Air pollutant emissions depend on the type of wood and the technology and operational conditions of the wood stove. A better understanding of emissions from local wood species and wood stove performance would help to identify better biomass fuels and wood stove technologies in order to reduce air pollution from residential wood burning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号