首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   392篇
  免费   4篇
  国内免费   2篇
安全科学   20篇
废物处理   11篇
环保管理   88篇
综合类   78篇
基础理论   72篇
环境理论   1篇
污染及防治   95篇
评价与监测   24篇
社会与环境   8篇
灾害及防治   1篇
  2022年   4篇
  2021年   10篇
  2020年   3篇
  2017年   4篇
  2016年   7篇
  2015年   12篇
  2014年   15篇
  2013年   31篇
  2012年   15篇
  2011年   22篇
  2010年   18篇
  2009年   9篇
  2008年   15篇
  2007年   23篇
  2006年   19篇
  2005年   9篇
  2004年   18篇
  2003年   19篇
  2002年   12篇
  1999年   4篇
  1997年   4篇
  1994年   6篇
  1993年   7篇
  1991年   3篇
  1989年   4篇
  1988年   4篇
  1987年   4篇
  1982年   5篇
  1981年   2篇
  1980年   5篇
  1979年   3篇
  1978年   2篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1972年   3篇
  1970年   2篇
  1961年   3篇
  1953年   2篇
  1952年   2篇
  1940年   3篇
  1939年   2篇
  1937年   2篇
  1930年   2篇
  1928年   2篇
  1926年   3篇
  1923年   2篇
  1914年   3篇
  1913年   4篇
排序方式: 共有398条查询结果,搜索用时 0 毫秒
31.
There is renewed interest in re-establishing trees on 0.6 million ha of mining-disturbed lands in the Appalachian mountains of Eastern United States. Many coal-mined lands reclaimed to meet requirements of US federal law have thick herbaceous vegetation and compacted soils which impede tree establishment. Mitigation practices were applied on three mine sites and evaluated for success in enabling planted trees to become established. Eastern white pine (Pinus strobus), hybrid poplar (Populus deltoids × Populus trichocarpa), and mixed Appalachian hardwoods were established using weed control only and weed control with subsoil ripping. Trees were measured in October of 2008 after 5 years of growth. Subsoil ripping increased mixed hardwood survival from 43 to 71 %, hybrid poplar biomass index from 1.51 to 8.97 Mg ha?1, and Eastern white pine biomass index from 0.10 to 0.32 Mg ha?1. When restoring trees to unused mined sites, subsoil ripping can aid survival and growth to an extent that will result in a valuable forest.  相似文献   
32.
ABSTRACT: This paper describes the philosophy, algorithms, and implementation of a computer-oriented land use forecasting-water policy simulation model. The model is applicable to SMSA's organized on a census tract basis by counties. The forecasts are macro to the census tract level for industrial, residential, commercial and public land uses, and are dynamically altered by hypothesized water management policies. Modeling is based on an economic data base of the region, and is extremely flexible for the user. An example set of simulations is included for illustrative purposes.  相似文献   
33.
Although fish are usually thought of as victims of water quality degradation, it has been proposed that some planktivorous species may improve water quality through consumption of algae and sequestering of nutrients via growth. Within most numerical water quality models, the highest trophic level modeled explicitly is zooplankton, prohibiting an investigation of the effect a fish species may be having on its environment. Conversely, numerical models of fish consumption do not typically include feedback mechanisms to capture the effects of fish on primary production and nutrient recycling. In the present study, a fish bioenergetics model is incorporated into CE-QUAL-ICM, a spatially explicit eutrophication model. In addition to fish consumption of algae, zooplankton, and detritus, fish biomass accumulation and nutrient recycling to the water column are explicitly accounted for. These developments advance prior modeling efforts of the impact of fish on water quality, many of which are based on integrated estimates over an entire system and which omit the feedback the fish have through nutrient recycling and excretion. To validate the developments, a pilot application was undertaken for Atlantic menhaden (Brevoortia tyrannus) in Chesapeake Bay. The model indicates menhaden may reduce the algal biomass while simultaneously increasing primary productivity.  相似文献   
34.
Environment, Development and Sustainability - This paper examines higher education efforts linking United Nations Sustainable Development Goals (UNSDGs) and agri-food system sustainability given...  相似文献   
35.
36.
Little research has been conducted in the Lake States (Minnesota, Wisconsin, and Michigan) to evaluate the effects of municipal and industrial by-product applications on the early growth of short rotation woody crops such as hybrid poplar. Anticipated shortages of harvestable-age aspen in the next decade can be alleviated and rural development can be enhanced through the application of by-products to forest soils. This study was conducted to evaluate the effects of inorganic fertilizer, boiler ash, biosolids, and the co-application of ash and biosolids application on tree growth and soil properties by measuring hybrid poplar clone NM-6 (Populus nigra L. x P. maximowiczii A. Henry) yield, nutrient uptake, and select post-harvest soil properties after 15 wk of greenhouse growth. Treatments included a control of no amendment; agricultural lime; inorganic N, P, and K; three types of boiler ash; biosolids application rates equivalent to 70, 140, 210, and 280 kg available N ha(-1); and boiler ash co-applied with biosolids. All of the by-products treatments showed biomass production that was equal to or greater than inorganic fertilizer and lime treatments. A trend of increased biomass with increasing rates of biosolids was observed. Soil P concentration increased with increasing rates of biosolids application. None of the by-products treatments resulted in plant tissue metal concentrations greater than metal concentrations of plant tissue amended with inorganic amendments. Biosolids, boiler ash, and the co-application of biosolids and boiler ash together on forest soils were as beneficial to plant growth as inorganic fertilizers.  相似文献   
37.
Land application of wastewater has become an important disposal option for food-processing plants operating year-round. However, there are concerns about nutrient leaching from winter wastewater application on frozen soils. In this study, P and N leaching were compared between nongrowing season application of tertiary-treated wastewater plus growing season application of partially treated wastewater (NGS) vs. growing season application of partially treated wastewater (GS) containing high levels of soil P. As required by the Minnesota Pollution Control Agency (MPCA), the wastewater applied to the NGS fields during October through March was treated such that it contained < or =6 mg L(-1) total phosphorus (TP), < or =10 mg L(-1) NO3-N, and < or =20 mg L(-1) total Kjeldahl nitrogen (TKN). The only regulation for wastewater application during the growing season (April through September) was that cumulatively it did not exceed the agronomic N requirements of the crop in any sprayfield. Application of tertiary-treated wastewater during the nongrowing season plus partially treated wastewater during the growing season did not significantly increase NO3-N leaching compared with growing season application of nonregulated wastewater. However, median TP concentration in leachate was significantly higher from the NGS (3.56 mg L(-1)) than from the GS sprayfields (0.52 mg L(-1)) or nonirrigated sites (0.52 mg L(-1)). Median TP leaching loss was also significantly higher from the NGS sprayfields (57 kg ha(-1)) than from the GS (7.4 kg ha(-1)) or control sites (6.9 kg ha(-1)). This was mainly due to higher hydraulic loading from winter wastewater application and limited or no crop P uptake during winter. Results from this study indicate that winter application of even low P potato-processing wastewater to high P soils can accelerate P leaching. We conclude that the regulation of winter wastewater application on frozen soils should be based on wastewater P concentration and permissible loading. We also recommend that winter irrigation should take soil P saturation into consideration.  相似文献   
38.
Phosphorus-immobilizing amendments can be useful in minimizing P leaching from high P soils that may be irrigated with wastewater. This study tested the P-binding ability of various amendment materials in a laboratory incubation experiment and then tested the best amendment in a field setup using drainage lysimeters. The laboratory experiment involved incubating 100-g samples of soil (72 mg kg(-1) water-extractable phosphorus, WEP) with various amendments at different rates for 63 d at field moisture capacity and 25 degrees C. The amendments tested were alum [Al2SO4)3.14H2O], ferric chloride (FeCl3), calcium carbonate (CaCO3), water treatment residual (WTR), and sugarbeet lime (SBL). Ferric chloride and alum at rates of 1.5 and 3.9 g kg(-1), respectively, were the most effective amendments that decreased WEP to 20 mg kg(-1), below which leaching has previously been shown to be low. Alum (1.3 kg m(-2)), which is less sensitive to redox conditions, was subsequently tested under field conditions, where it reduced WEP concentration in the 0- to 0.15-m layer from 119 mg kg(-1) on Day 0 to 36.1 mg kg(-1) (85% decrease) on Day 41. Lysimeter breakthrough tests using tertiary-treated potato-processing wastewater (mean total phosphorus [TP] = 3.4 mg L(-1)) showed that alum application reduced leachate TP and soluble reactive phosphorus (SRP) concentrations by 27 and 25%, respectively. These results indicate that alum application may be an effective strategy to immobilize P in high P coarse-textured soils. The relatively smaller decreases in TP and SRP in the leachate compared to WEP suggest some of the P may be coming from depths below 0.2 m. Thus, to achieve higher P sequestration, deeper incorporation of the alum may be necessary.  相似文献   
39.
Macroinvertebrates were examined on an impounded valley marsh in Stonington, Connecticut, that has changed from aTypha-dominated system to one with typical salt-marsh vegetation during 13 years following the reintroduction of tidal exchange. Animal populations on this restored impounded marsh were evaluated by comparing them with populations on a nearby unimpounded valley marsh of roughly the same size. Populations of the high marsh snail,Melampus bidentatus Say, were quantitatively sampled along transects that extended from the water-marsh edge to the upland; those of the ribbed mussel,Geukensia demissa Dillwyn, were sampled in low marsh areas on transects along the banks of creeks and mosquito ditches. The occurrence of other marsh invertebrates also was documented, but their abundance was not measured. The mean density ofMelampus was 332±39.6 SE/m2 on the restored impounded marsh and 712±56.0 SE/m2 on the unimpounded marsh. However, since snails were larger on the restored impounded marsh, the difference in snail biomass was less pronounced than the difference in snail density. MeanMelampus biomass was 4.96±0.52 SE g dry wt/m2 on the restored impounded marsh and 6.96±0.52 SE g dry wt/m2 on the unimpounded marsh. On the two marshes, snail density and biomass varied in relation to plant cover and other factors. The density and biomass ofGeukensia at the edge of the marsh were comparable on the restored impounded and unimpounded marshes. Mean mussel densities ranged from 80 to 240/m2 and mean mussel biomass varied from 24.8–64.8 g dry wt/m2 in different low marsh areas. In contrast, below the impoundment dike, meanGeukensia density was 1100±96.4 SE/m2 and meanGeukensia biomass was 303.6±33.28 SE g dry wt/m2. A consideration of all available evidence leads to the conclusion that the impounded marsh is in an advanced phase of restoration.  相似文献   
40.
ABSTRACT: Geographic Information Systems (GIS) were used to assess the relationships between land use patterns and the physical habitat and macroinvertebrate fauna of streams within similar sized watersheds. Eleven second or third order watersheds ranging from highly urbanized to heavily forested were selected along Lake Superior's North Shore. Land use patterns within the watersheds were quantified using readily available digital land use/land cover information, with a minimum mapping resolution of 16 ha. Physical habitat features, describing substrate characteristics and stream morphology, were characterized at sample points within each stream. Principle component and correlation analyses were used to identify relationships between macroinvertebrates and stream physical habitat, and between habitat and land use patterns. Substrate characteristics and presence of coarse woody debris were found to have the strongest correlations with macreinvertebrate assemblage richness and composition. Agricultural and urban land use was correlated with substrate characteristics. Algal abundance, associated with macroinvertebrate compositional differences, was correlated with housing density and non-forest land covers. The use of readily available spatial data, even at this relatively coarse scale, provides a means to detect the primary relationships between land use and stream habitat quality; finer-resolution GIS databases are needed to assess more subtle influences, such as those due to riparian conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号