首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9784篇
  免费   8篇
  国内免费   3篇
安全科学   5篇
废物处理   771篇
环保管理   1227篇
综合类   953篇
基础理论   3146篇
污染及防治   1772篇
评价与监测   1018篇
社会与环境   898篇
灾害及防治   5篇
  2022年   7篇
  2021年   10篇
  2020年   5篇
  2019年   10篇
  2018年   1477篇
  2017年   1380篇
  2016年   1201篇
  2015年   130篇
  2014年   20篇
  2013年   25篇
  2012年   466篇
  2011年   1349篇
  2010年   699篇
  2009年   600篇
  2008年   883篇
  2007年   1232篇
  2006年   10篇
  2005年   23篇
  2004年   35篇
  2003年   63篇
  2002年   102篇
  2001年   14篇
  2000年   11篇
  1999年   2篇
  1998年   11篇
  1997年   1篇
  1996年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1984年   11篇
  1983年   8篇
  1979年   1篇
  1935年   2篇
排序方式: 共有9795条查询结果,搜索用时 15 毫秒
131.
Comprehensive study of the factors influencing household solid waste (HSW) generation is crucial and fundamental for exploring the generation mechanism and forecasting future dynamics of HSW. A case study of Xiamen Island, China was employed to reveal the direct and indirect effects of demographic/socioeconomic factors on solid waste generation at the urban household scale. Based on a face-to-face questionnaire and two-stage survey of solid waste generation, a path analysis model was built. Results showed that the proposed path model exhibited good fit indices. Family size and dinning-at-home rate (DR), whose coefficients were ?0.40 and 0.43, respectively, were the two major factors influencing HSW directly. Moreover, family size, education level, employment rate and age structure played different degrees of indirect effects on HSW generation through respective paths, which should not be ignored. In terms of total effects, coefficients of family size, DR and employment rate were ?0.46, 0.43 and ?0.37, respectively, which were three most dominant factors influencing HSW generation. As for waste composition, organic waste was the most representative of HSW dynamics, and was the most sensitive to impact by the factors studied. Quantitative results of this study have important policy implications for sustainable municipal solid waste management.  相似文献   
132.
While the cathode ray tube (CRT) funnel containing lead could be transported to a smelting facility to recover lead, which could be an available option in domestic, a proper technology to recycle a CRT panel must be developed. Thus, it was suggested that CRT panel glass be used as aggregates of concrete blocks and clay bricks. Samples of blocks and bricks were fabricated with CRT powders and tested to measure their strength and absorption rate to determine their qualities, and environmental soundness was determined by measuring the leaching rate of hazardous metals. For concrete blocks, CRT panel glass powders incorporated as aggregates up to 40 % replacing stone powder was proposed as the proper condition for manufacturing blocks. Around 2 % of CRT panel incorporated into clay brick to substitute Kaoline was suggested to fabricate the best quality of clay brick. Results of leaching test met the criteria with much less concentration of hazardous metals, even lead compound containing in the CRT funnel. To conclude, the use of CRT panel powder after crushing it to the proper size as an aggregate of concrete blocks or clay bricks could be one of the appropriate alternatives to recycle for CRT glass waste being generated drastically in a short term.  相似文献   
133.
Coffee residue is usually regarded as a kind of agriculture waste; as its quantity increases the treatment of coffee residue will become an environmental problem. This research is innovative in that it derives the possibility of recycle application using coffee residue ash for cement replacement. In this research, coffee residue is burned in an electronic oven to three kinds of coffee residue ash at 500, 600 and 700 °C, and then appropriate apparatus is used to check the chemical and physical properties of these three types of coffee residue ash. After a general comparison, this study selected 500 and 600 °C coffee residue ashes with 2, 3, 5, 10 and 15 % cement replacements to make 5 cm3 cube mortar specimen to test different curing ages’ compressive strength. Through measurement and experiment, this research found that the compressive strength decreased by adding 500 or 600 °C coffee residue ash into the mortar. By considering waste reduction and practice application, this research derives that using the 600 °C coffee residue ash with 10 % replacement is better than others application, such using result also can get valuable efficiencies of financial and CO2 reduction.  相似文献   
134.
Increasing attention is currently given to the management of end-of-life (EoL) hybrid electric vehicles (HEVs), because approximately two decades have passed since they were first introduced to the market. A HEV would be one of the largest consumers of rare earth elements (REEs), and hence represents the greatest potential for REE recovery in the future. The purpose of this study is to clarify the present and future recovery potential of REEs that are disposed of as EoL HEVs. This study first estimated the numbers of EoL HEVs during fiscal years (FYs) 2010–2030, and then clarified the potential for recovery of REEs from two HEV-specific components—the hybrid transmission and NiMH battery unit. The results suggest that 0.51–0.65 million HEVs will reach the EoL stage in FY2030, compared with only 11,000 HEVs in FY2010. As of FY2030, REE recovery potentials will increase to 220 tons and 2900 tons for EoL hybrid transmission and NiMH battery units, respectively. A total of 49,000 tons of REEs will be contained within HEV-specific components of HEVs still in use. Moreover, the potential for recovery of REEs from EoL hybrid transmissions and NiMH battery units is estimated to equal 35.4 and 92.1 % of respective demand.  相似文献   
135.
Along with the world population increase, meat requirement has been also increasing; thus, massive livestock manure has been released leading to problems due to surplus nutrients. To overcome this situation, we should consider availing some nutrient removal or reuse technology. The commonest way to recover resources from livestock manure is by producing liquid fertilizer and compost. However, some technologies are required to make it easier and safer for transportation and handling of manure fertilizer due to various problems such as poor fertilization quality with low maturity, emission of odor, nutrient loss, and disharmony due to fluctuating seasonal and regional supplies and demands. In this study, available technologies for resource recovery from animal wastes were introduced with economic benefits, and an integrated system was proposed including energy flow. The system consisted of anaerobic digestion or microbial fuel cell, struvite precipitation for P recovery, nitrogen enrichment by mechanical vapor compression distillation, and incineration processes (optional). Consequently, the energy output from the system could be sufficient for operating the entire system without the need for extra energy input.  相似文献   
136.
In this study, we propose a process making calcium carbonate and calcium sulfate and recovering absorbent using ammonia absorbent, carbon dioxide, and industrial waste. The main objective of this study is to confirm the possibility of carbon capture and utilization based on waste materials. We assumed desulfurization gypsum and construction waste (ready mixed concrete washing water, waste concrete, etc.) are CaSO4, Ca(OH)2, respectively. And concentration of simulated carbon dioxide gas was 15 vol% similar to flue gas. Calcium carbonate was produced by combination reaction between ionic CO2 in absorbent and metal ion in the solid waste. Experiments were conducted at normal temperature and pressure. Furthermore, the generated products were characterized by X-ray diffraction, and scanning electron microscope.  相似文献   
137.
Microbial response on volatile fatty acids (VFAs) is a key for methane fermentation processes since accumulation of VFAs often causes an acidic failure, especially treating such organics as food wastes composed of mostly readily biodegradable materials. To evaluate the impact of VFA accumulation, a lab-scale continuous experiment was performed for 110 days with sequential feeding of heterogeneous food wastes. When the volumetric loading rate was increased from 6 to 8 kg-COD/m3/day, a sudden decrease of methane production was observed with an accumulation of acetate and propionate in the fermenter. After discontinuation of feeding for 10 days, the digestate in the fermenter was centrifuged and washed with tap water to reduce the VFAs to be acceptable concentration below 1000 mg-COD/L. Nevertheless, no recovery of methane production was observed and VFA concentrations consistently increased. To model the event, a modification of ADM1 was made assuming the methanogens in the fermenter were irreversibly inactivated under very high VFA. Also considering the different nature of the fed food wastes over 11 samples, decomposition kinetics of individual food wastes were manipulated. The modified ADM1 with methanogenic activity decay reasonably reproduced the responses for soluble material concentrations and methane gas production rate over the experimental period.  相似文献   
138.
This study was to find out potential of methane yield on food waste and food waste leachate as biomass in Korea. The seven biogasification facilities were selected for comparison of theoretical methane yield and actual methane yield. The theoretical methane yield was calculated based on organic constituents (carbohydrate, protein, fat) and based on element analysis. The actual methane yield was investigated based on volatile solids and CODcr. Theoretical methane yields by organic constituents were 0.52 Sm3CH4/kg VS and 0.35 Sm3CH4/kg CODcr and these by element analysis were 0.53 Sm3CH4/kg VS and 0.36 Sm3CH4/kg CODcr. Actual methane yields were 0.36 Sm3CH4/kg VSin and 0.26 Sm3CH4/kg CODcrin. Considering the average removal efficiency of organic materials of seven FWL biogasification facilities, actual methane yields were 0.48 Sm3CH4/kg VSrem and 0.33 Sm3CH4/kg CODcrrem. Methane yield by organic constituents is very similar to that by element analysis and actual methane yields of volatile solids and CODcr were similar to theoretical value. The actual methane yield in this study showed approximated boundary values with previous other references which conducted in lab-scale or biochemical methane potential (BMP) tests. In conclusion, Korean food waste and food waste leachate have sufficient potential of methane yield in the ongoing biogasification facilities.  相似文献   
139.
Experiments were conducted using a bubbling reactor to investigate nitrogen oxide absorption in the calcium sulfite slurry. The effects of CaSO3 concentration, NO2/NO mole ratio and O2 concentrations on NO2 and SO2 absorption efficiencies were investigated. Five types of additives, including MgSO4, Na2SO4, FeSO4, MgSO4/Na2SO4 and FeSO4/Na2SO4, had been evaluated for enhancing NO2 absorption in CaSO3 slurry. Results showed that CaSO3 concentration had significant impact on NO2 and SO2 absorption efficiencies, and the highest absorption efficiencies of SO2 and NO2 could reach about 99.5 and 75.0 %, respectively. Furthermore, the NO2 absorption was closely related to the NO2/NO mole ratio, and the existence of NO2 in flue gas may promote NO absorption. The presence of O2 in simulated flue gas was disadvantage for NO x removal because it can oxidize sulfite to sulfate. It was worth pointing out that FeSO4/Na2SO4 was the best additive among those investigated additives, as the NO2 removal efficiency was significantly increased from 74.8 to 95.0 %. IC and in situ FTIR results suggest that the main products were NO3 ? and NO2 ? in liquid phase and N2O, N2O5 and HNO3 in gas phase during the CaSO3 absorption process.  相似文献   
140.
Used lead–acid battery (ULAB) recycling has caused numerous health and environmental issues in developing countries. Surface soil pollution from ULAB recycling activities has been linked with elevated levels of lead in human blood. We measured surface soil lead in and surrounding the ULAB recycling village of Hung Yen in northern Vietnam in 2011, 2013, and 2014. The data were analyzed statistically and discussed with respect to distance from the contamination source, year of measurement, contamination pathway, and countermeasures against the contamination. Transportation routes from the smelter or collection site displayed the greatest concentration of surface soil lead (median 6400–10,000 mg/kg). Surface soil lead decreased significantly with distance along the road from the ULAB recycling site, although such a decrease was not observed for rice fields, agricultural roads, or garden soil. Re-suspension and adherence by traffic were identified as key pollution pathways. Distance from the source, covering of the surface of roads, construction of walls, and position relative to the source were shown to be the most effective factors in the reduction of surface soil lead pollution. Application of a combination of these measures should result in improvement in the health of residents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号