首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   279篇
  免费   3篇
  国内免费   2篇
安全科学   10篇
废物处理   21篇
环保管理   28篇
综合类   50篇
基础理论   52篇
污染及防治   92篇
评价与监测   16篇
社会与环境   11篇
灾害及防治   4篇
  2023年   7篇
  2022年   4篇
  2021年   13篇
  2020年   7篇
  2019年   3篇
  2018年   7篇
  2017年   14篇
  2016年   14篇
  2015年   13篇
  2014年   11篇
  2013年   21篇
  2012年   15篇
  2011年   20篇
  2010年   14篇
  2009年   13篇
  2008年   14篇
  2007年   15篇
  2006年   9篇
  2005年   11篇
  2004年   14篇
  2003年   15篇
  2002年   6篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1994年   3篇
  1992年   1篇
  1991年   1篇
  1987年   1篇
  1985年   1篇
  1982年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1972年   1篇
  1959年   1篇
排序方式: 共有284条查询结果,搜索用时 15 毫秒
151.
Scrap tyre pyrolysis under vacuum is attractive because it allows easier product condensation and control of composition (gas, liquid and solid). With the aim of determining the effect of vacuum on the pyrolysis kinetics, a study has been carried out in thermobalance. Two data analysis methods have been used in the kinetic study: (i) the treatment of experimental data of weight loss and (ii) the deconvolution of DTG (differential thermogravimetry) curve. The former allows for distinguishing the pyrolysis of the three main components (volatile components, natural rubber and styrene–butadiene rubber) according to three successive steps. The latter method identifies the kinetics for the pyrolysis of individual components by means of DTG curve deconvolution. The effect of vacuum in the process is significant. The values of activation energy for the pyrolysis of individual components of easier devolatilization (volatiles and NR) are lower for pyrolysis under vacuum with a reduction of 12 K in the reaction starting temperature. The kinetic constant at 503 K for devolatilization of volatile additives at 0.25 atm is 1.7 times higher than that at 1 atm, and that corresponding to styrene–butadiene rubber at 723 K is 2.8 times higher. Vacuum enhances the volatilization and internal diffusion of products in the pyrolysis process, which contributes to attenuating the secondary reactions of the repolymerization and carbonization of these products on the surface of the char (carbon black). The higher quality of carbon black is interesting for process viability.The large-scale implementation of this process in continuous mode requires a comparison to be made between the economic advantages of using a vacuum and the energy costs, which will be lower when the technologies used for pyrolysis require a lower ratio between reactor volume and scrap tyre flow rate.  相似文献   
152.
Atrazine impact on human health and the environment have been extensively studied. Phytoremediation emerged as a low cost, environmental friendly biotechnological solution for atrazine pollution in soil and water. In vitro atrazine tolerance assays were performed and Lolium multiflorum was found as a novel tolerant species, able to germinate and grow in the presence of 1 mg kg−1 of the herbicide. L. multiflorum presented 20% higher atrazine removal capacity than the natural attenuation, with high initial degradation rate in microcosms. The mechanisms involved in atrazine tolerance such as mutation in psbA gene, enzymatic detoxification via P450 or chemical hydrolysis through benzoxazinones were evaluated. It was demonstrated that atrazine tolerance is conferred by enhanced enzymatic detoxification via P450. Due to its atrazine degradation capacity in soil and its agronomical properties, L. multiflorum is a candidate for designing phytoremediation strategies for atrazine contaminated agricultural soils, especially those involving run-off avoiding.  相似文献   
153.
In the 35 years since its inception, the Brazilian National Program for the Conservation of Marine Turtles (TAMAR) has had great success in protecting the five species of sea turtles that occur in Brazil. It has also contributed significantly to worldwide scientific data and knowledge about these species’ biology, such as life cycles and migration patterns. TAMAR’s conservation strategies have always relied on a variety of environmental education and social inclusion (EESI) activities highly adapted to the socio-environmental evolving contexts of its 25 locations distributed across nine states. Diversity and flexibility are critical to enable timely and effective local responses to existing or potential threats to sea turtles. The intuitive, locally adapted, decentralized, and independent way EESI activities have been carried out have generated positive results in the resolution of specific and evolving local problems through the course of the project. This article brings EESI under the same conceptual framework that underlies its conservation approach by adopting an adaptive threat management framework to organize and qualify its educational and social inclusion interventions according to the main categories of threat addressed by TAMAR.  相似文献   
154.
155.
Several species of seagrass and marine macrophytes were investigated for their biosorption performance in the removal of lead from aqueous solution. The effect of pH on the equilibrium of the seagrass Cymodocea nodosa as a biosorbent also was studied. It was found that increasing pH increased lead biosorption, with a maximum uptake of approximately 140 mg/g in the range pH 3.3 to 5. Equilibrium data at different pH levels were successfully fitted to competitive equilibrium models. In addition, the seaweeds belonging to different phyla (i.e., Chlorophyta, Heterokontophyta, and Rhodophyta) were studied for the effect of their structure on equilibrium at a constant pH 5. The brown algae (Heterokontophyta) showed the highest potential for lead sorption, with a maximum uptake of 220 mg/g for C. compressa and 140 mg/g for S. lomentaria. The green algae (Chlorophyta) showed lead uptake in the range 40 to 90 mg/g, and the red algae (Rhodophyta) was least effective, with uptake in the range 10 to 40 mg/g.  相似文献   
156.
157.
158.
Abstract

Sources and concentrations of indoor nitrogen dioxide (NO2) were examined in Barcelona, Spain, during 1996– 1999. A total of 340 dwellings of infants participating in a hospital-based cohort study were selected from different areas of the city. Passive filter badges were used for indoor NO2 measurement over 7–30 days. Dwelling inhabitants completed a questionnaire on housing characteristics and smoking habits. Data on outdoor NO2 concentrations were available for the entire period of the study in the areas of the city where indoor concentrations were determined. Bivariate analysis was performed to investigate relationships between indoor NO2 concentrations on one hand and outdoor NO2 concentrations, housing, and occupant characteristics on the other. Stepwise multiple linear regression was performed with variables that were 1996 and 27.02 ppb in 1999, with the highest yearly value of 27.82 ppb in 1997. In the same time period, mean outdoor NO2 concentration ranged between 25.26 and 25.78 ppb with a peak of 30.5 ppb in 1998. Multiple regression analysis showed that principal sources of indoor NO2 concentrations were the use of a gas cooker, the absence of an extractor fan when cooking, and cigarette smoking. The absence of central heating was also associated with higher NO2 concentrations. Finally, each ppb increase in outdoor NO2 was associated with a 1% increase in indoor concentrations.  相似文献   
159.
This paper provides examples from the last fifty years of scientific and technological innovations that provide relatively easy, quick and affordable means of addressing key water management issues. Scientific knowledge and technological innovation can help open up previously closed decision‐making systems. Four of these tools are discussed in this paper: a) the opportunities afforded by virtual water trade; b) the silent revolution for beneficial use of groundwater; c) salt water desalination; and finally, d) the use of remote sensing and geographic information systems (GIS). Together these advances are changing the options available to address water and food security that have been predominant for centuries in the minds of most water decision‐makers.  相似文献   
160.
Restoration of degraded lands could be a way to reverse soil degradation and desertification in semiarid areas and mitigate greenhouse gases (GHG). Our objective was to evaluate the long-term effects of a single addition of organic refuse on soil physical properties and measure its carbon sequestration potential. In 1988, a set of five plots (87 m(2) each) was established in an open desert-like scrubland (2-4% cover) in Murcia, Spain, to which urban solid refuse (USR) was added in a single treatment at different rates. Soil properties were monitored over a 5-yr period. Sixteen years after the addition, three of the plots were monitored again (P0: control, P1: 13 kg m(-2), P2: 26 kg m(-2) of USR added) to assess the lasting effect of the organic addition on the soil organic carbon (SOC) pools and on the physical characteristics of the soil. The SOC content was higher in P2 (16.4 g kg(-1)) and in P1 (11.8 g kg(-1)) than in P0 (7.9 g kg(-1)). Likewise, aerial biomass increased from 0.18 kg m(-2) in P0 up to 0.27 kg m(-2) in P1 and 0.46 kg m(-2) in P2. This represents a total C sequestration of 9.5 Mg ha(-1) in P2 and 3.4 Mg ha(-1) in P1, most of the sequestered C remaining in the recalcitrant soil pool. Additionally, higher saturated hydraulic conductivity, aggregate stability, and available water content values and lower bulk density values were measured in the restored plots. Clearly, a single addition of organic refuse to the degraded soils to increase the potential for C sequestration was effective.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号