首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   513篇
  免费   26篇
  国内免费   39篇
安全科学   29篇
废物处理   24篇
环保管理   123篇
综合类   73篇
基础理论   136篇
环境理论   2篇
污染及防治   125篇
评价与监测   43篇
社会与环境   18篇
灾害及防治   5篇
  2023年   9篇
  2022年   5篇
  2021年   14篇
  2020年   11篇
  2019年   17篇
  2018年   21篇
  2017年   21篇
  2016年   38篇
  2015年   31篇
  2014年   27篇
  2013年   31篇
  2012年   20篇
  2011年   41篇
  2010年   35篇
  2009年   26篇
  2008年   39篇
  2007年   26篇
  2006年   17篇
  2005年   14篇
  2004年   17篇
  2003年   16篇
  2002年   17篇
  2001年   4篇
  2000年   6篇
  1999年   1篇
  1998年   3篇
  1997年   11篇
  1996年   15篇
  1995年   7篇
  1994年   4篇
  1993年   5篇
  1992年   8篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1987年   3篇
  1985年   2篇
  1984年   1篇
  1982年   2篇
  1981年   2篇
  1979年   1篇
  1978年   2篇
排序方式: 共有578条查询结果,搜索用时 328 毫秒
91.
Initial failure to site a small hazardous waste transfer station focussed attention on the need for a siting approach to overcome community resistance to negotiating siting agreements. A community study program was structured utilizing key principles of community decision making to justify need, to allow for community value judgments of gains, losses and fairness, and to encourage community adaptation to change by providing community control and choice. By translating these principles into specific actions, community awareness and responsibility were fostered and resulted in a consensus to negotiate with transfer station proponents in over 70 percent of the fourteen participating communities. The successful communities represented the entire range of size, income, education levels, type and ownership of homes. Participants stated that the key factors that contributed to their success in reaching consensus were the recognition of need, choice of options and of management measures to minimize impacts, economic cost reduction, and the growth of community pride as a result of taking part in the decision process. These factors reflect the positive effect and the significance of applying the derived decision-making principles.  相似文献   
92.
Soil methane (CH(4)) biofilters, containing CH(4)-oxidizing bacteria (methanotrophs), are a promising technology for mitigating greenhouse gas emissions. However, little is known about long-term biofilter performance. In this study, volcanic pumice topsoils (0-10 cm) and subsoils (10-50 cm) were tested for their ability to oxidize a range of CH(4) fluxes over 1 yr. The soils were sampled from an 8-yr-old and a 2-yr-old grassed landfill cover and from a nearby undisturbed pasture away from the influence of CH(4) generated by the decomposing refuse. Methane was passed through the soils in laboratory chambers with fluxes ranging from 0.5 g to 24 g CH(4) m(-3) h(-1). All topsoils efficiently oxidized CH(4). The undisturbed pasture topsoil exhibited the highest removal efficiency (24 g CH(4) m(-3) h(-1)), indicating rapid activation of the methanotroph population to the high CH(4) fluxes. The subsoils were less efficient at oxidizing CH(4) than the topsoils, achieving a maximum rate oxidation rate of 7 g CH(4) m(-3) h(-1). The topsoils exhibited higher porosities; moisture contents; surface areas; and total C, N, and available-P concentrations than the subsoils, suggesting that these characteristics strongly influence growth and activity of the CH(4)-oxidizing bacteria. Soil pH values and available-P levels gradually declined during the trial, indicating a need to monitor chemical parameters closely so that adjustments can be made when necessary. However, other key soil physicochemical parameters (moisture, total C, total N) increased over the course of the trial. This study showed that the selected topsoils were capable of continually sustaining high CH(4) removal rates over 1 yr, which is encouraging for the development of biofilters as a low-maintenance greenhouse gas mitigation technology.  相似文献   
93.
Ng TY  Pais NM  Dhaliwal T  Wood CM 《Chemosphere》2012,87(11):1208-1214
We tested the use of whole-body and subcellular Cu residues (biologically-active (BAM) and inactive compartments (BIM)), of the oligochaete Lumbriculus variegatus to predict Cu toxicity in fresh water. The critical whole-body residue associated with 50% mortality (CBR50) was constant (38.2-55.6 μg g−1 fresh wt.) across water hardness (38-117 mg L−1 as CaCO3) and exposure times during the chronic exposure. The critical subcellular residue (CSR50) in metal-rich granules (part of BIM) associated with 50% mortality was approximately 5 μg g−1 fresh wt., indicating that Cu bioavailability is correlated with toxicity:subcellular residue is a better predictor of Cu toxicity than whole-body residue. There was a strong correlation between the whole-body residue of L. variegatus (biomonitor) and survival of Chironomus riparius (relatively sensitive species) in a hard water Cu co-exposure. The CBR50 in L. variegatus for predicting mortality of C. riparius was 29.1-45.7 μg g−1 fresh wt., which was consistent within the experimental period; therefore use of Cu residue in an accumulator species to predict bioavailability of Cu to a sensitive species is a promising approach.  相似文献   
94.
Can we develop land use policy that balances the conflicting views of stakeholders in a catchment while moving toward long term sustainability? Adaptive management provides a strategy for this whereby measures of catchment performance are compared against performance goals in order to progressively improve policy. However, the feedback loop of adaptive management is often slow and irreversible impacts may result before policy has been adapted. In contrast, integrated modelling of future land use policy provides rapid feedback and potentially improves the chance of avoiding unwanted collapse events. Replacing measures of catchment performance with modelled catchment performance has usually required the dynamic linking of many models, both biophysical and socio-economic—and this requires much effort in software development. As an alternative, we propose the use of variable environmental intensity (defined as the ratio of environmental impact over economic output) in a loose coupling of models to provide a sufficient level of integration while avoiding significant effort required for software development. This model construct was applied to the Motueka Catchment of New Zealand where several biophysical (riverine water quantity, sediment, E. coli faecal bacteria, trout numbers, nitrogen transport, marine productivity) models, a socio-economic (gross output, gross margin, job numbers) model, and an agent-based model were linked. An extreme set of land use scenarios (historic, present, and intensive) were applied to this modelling framework. Results suggest that the catchment is presently in a near optimal land use configuration that is unlikely to benefit from further intensification. This would quickly put stress on water quantity (at low flow) and water quality (E. coli). To date, this model evaluation is based on a theoretical test that explores the logical implications of intensification at an unlikely extreme in order to assess the implications of likely growth trajectories from present use. While this has largely been a desktop exercise, it would also be possible to use this framework to model and explore the biophysical and economic impacts of individual or collective catchment visions. We are currently investigating the use of the model in this type of application.  相似文献   
95.
96.
A state-of-the-science thermodynamic model describing gas-particle absorption processes was used to predict the gas-particle partitioning of mixtures of approximately 60 carbonyl compounds emitted from low-emission gasoline-powered vehicles, three-way catalyst gasoline-powered vehicles, heavy-duty diesel vehicles under the idle-creep condition (HDDV idle), and heavy-duty diesel vehicles under the five-mode test (HDDV 5-mode). Exhaust was diluted by a factor of 120-580 with a residence time of approximately 43 sec. The predicted equilibrium absorption partitioning coefficients differed from the measured partitioning coefficients by several orders of magnitude. Time scales to reach equilibrium in the dilution sampling system were close to the actual residence time during the HDDV 5-mode test and much longer than the actual residence time during the other vehicle tests. It appears that insufficient residence time in the sampling system cannot uniformly explain the failure of the absorption mechanism to explain the measured partitioning. Other gas-particle partitioning mechanisms (e.g., heterogeneous reactions, capillary adsorption) beyond the simple absorption theory are needed to explain the discrepancy between calculated carbonyl partitioning coefficients and observed partitioning. Both of these alternative partitioning mechanisms imply great challenges for the measurement and modeling of semi-volatile primary organic aerosol (POA) species from motor vehicles. Furthermore, as emitted particle concentrations from newer vehicles approach atmospheric background levels, dilution sampling systems must fundamentally change their approach so that they use realistic particle concentrations in the dilution air to approximately represent real-world conditions. Samples collected with particle-free dilution air yielding total particulate matter concentrations below typical ambient concentrations will not provide a realistic picture of partitioning for semi-volatile compounds.  相似文献   
97.
The effect of sampling protocol on ambient air hydrocarbon mixing ratios was examined on eight sampling days in Los Angeles during 2007 and 2008. Four protocols, which were based on previously published multi-city urban hydrocarbon studies in the United States, were compared and differences were quantified. Whole air canister samples were collected and analyzed for nonmethane hydrocarbons (NMHCs). Differing sampling protocols resulted in large differences in mixing ratios, up to an order of magnitude, for certain NMHCs on the same sampling day. However, the magnitude of the variability between NMHC levels obtained by the four protocols was not consistent throughout the eight sampling days. It was found that sampling time, followed by sampling location, had the greatest influence on the magnitude of the mixing ratio. Ratios between hydrocarbons, often used in urban studies to gain information on emission sources, also varied depending on the protocol used. Comparison of absolute NMHC mixing ratios collected in urban environments using differing sampling protocols should be made with care.  相似文献   
98.
Semi-continuous and 24-h averaged measurements of fine carbonaceous aerosols were made concurrently at three sites within each of two U.S. Midwestern Cities; Detroit, Michigan and Cleveland, Ohio; during two, one-month intensive campaigns conducted in July of 2007 and January & February of 2008. A comparison of 24-h measurements revealed substantial intra-urban variability in carbonaceous aerosols consistent with the influence of local sources, and excesses in both PM2.5 organic carbon (OC) and elemental carbon (EC) were identified at individual sites within each city. High time-resolved black carbon (BC) measurements indicated that elemental carbon concentrations were higher at sites adjacent to freeways and busy surface streets, and temporal patterns suggested that excess EC at sites adjacent to freeways was dominated by mobile source emissions while excesses in EC away from traffic corridors was dominated by point/area source emissions. The site-to-site variability in OC concentrations was approximately 7% within the neighborhood scale (0.5–4 km) and between 4 and 27% at the urban scale (4–100 km). In contrast, measurements of organic source tracers, in conjunction with a Chemical Mass Balance (CMB) source-apportionment model, indicated that the spatial variation in the contribution of both mobile and stationary sources to PM2.5 OC often exceeded the variation in OC mass concentration by a factor of 3 or more. Markers for mobile sources, biomass smoke, natural gas, and coal combustion differed by as much as 60% within the neighborhood scale and by greater than 200% within the urban scale. The observations made during this study suggest that the urban excess of carbonaceous aerosols is much more complex than has been previously reported and that a more rigorous, source-oriented approach should be taken in order to assess the risk associated with exposure to carbonaceous aerosols within the industrialized environments of the Midwestern United States.  相似文献   
99.
Seasonal volatile organic compound emission data from loblolly pine (Pinus taeda) and Virginia pine (Pinus virginiana) were collected using branch enclosure techniques in Central North Carolina, USA. P. taeda monoterpene emission rates were at least ten times higher than oxygenated monoterpene and sesquiterpene emissions in all seasons. α-pinene and β-pinene were the most abundant emissions, while β-caryophyllene had the highest sesquiterpene emission rate from this species. β-phellandrene was the dominant compound emitted from P. virginiana, followed by the sesquiterpene β-caryophyllene. Sesquiterpene emissions from P. virginiana have not been reported in the literature previously. Summer sesquiterpene emissions from P. virginiana were nearly as high as monoterpene emissions, but were 4–12 times lower than monoterpene emissions in the other seasons. Oxygenated monoterpenes and 2-methyl-3-buten-2-ol were emitted at higher rates from P. taeda than from P. virginiana. Temperature response of the pinenes from P. taeda is similar to previously reported values used in emission models, while that for other compounds falls at the lower end of the previously reported range. Temperature response of all compounds from P. virginiana is in reasonable agreement with previously reported values from other pine species. There is evidence of light dependence of sesquiterpene emission after accounting for temperature response from both species. This effect is somewhat stronger in P. taeda. Bud break, needle expansion, and needle fall (and therefore wind events) seemed to increase monoterpene emission during non-summer seasons. In some instances springtime monoterpene emissions were higher than summertime emissions despite cooler temperatures. Emissions of individual compounds within monoterpene, oxygenated monoterpene, and sesquiterpene classes were highly correlated with each other. Compounds from different classes were much less correlated within each species. This is due to a varying temporal emission patterns for each BVOC class and suggests different production, storage, and emission controls for each. Analysis of enclosure blanks and diurnal patterns indicates that, despite precautions, disturbance due to the enclosure technique may still impact monoterpene emission rate estimates. This did not appear to affect sesquiterpene emissions.  相似文献   
100.
Woody biomass generated in short-rotation coppice (SRC) plantations with aspen (Populus tremula L.) has good properties for bioenergy crop production: annual yields are high, labour input per year is low, and it is ecologically valuable because of the multi-year rotation periods. Eastern Germany has a special advantage in producing bioenergy crops: the former “agricultural cooperatives” built up quite large farms with, compared to Western Germany, comparatively large fields. Therefore, a modelling study of the potential and the impacts of aspen SRC plantations in the five eastern federal states of Germany under the recent climate and future climate projections was conducted. The ecophysiological forest growth model 4C was used to simulate the growth of aspen SRC plantations and their impacts on carbon in soils, and groundwater recharge, on selected suitable areas currently under crops but with marginal site conditions for cropping. A clear signal to enhanced growth condition over the whole area can be seen in the simulation of the mean annual woody biomass yield under conditions of climate change, which increased from 7.47 t DW ha−1 a−1 under the recent climate to 9.26 t DW ha−1 a−1 at the end of the considered future period 2034–2055 under climate change. The mean soil carbon sequestration rate was 0.81 t C ha−1 a−1 under the recent climate and could rise up to 0.93 t C ha−1 a−1 under the assumption of climate change. On the other hand, the mean annual percolation rate, used as an indicator of impacts on the regional water budget, will diminish under future climatic conditions. The results suggest that aspen SRC plantations are a suitable contribution to regional CO2 mitigation and carbon sequestration under possible change of climate, but that negative impacts on the regional water budget are possible.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号