首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   485篇
  免费   5篇
  国内免费   13篇
安全科学   15篇
废物处理   66篇
环保管理   46篇
综合类   42篇
基础理论   93篇
污染及防治   184篇
评价与监测   44篇
社会与环境   10篇
灾害及防治   3篇
  2023年   4篇
  2022年   6篇
  2021年   9篇
  2020年   3篇
  2019年   2篇
  2018年   19篇
  2017年   25篇
  2016年   20篇
  2015年   10篇
  2014年   13篇
  2013年   73篇
  2012年   22篇
  2011年   47篇
  2010年   23篇
  2009年   22篇
  2008年   29篇
  2007年   35篇
  2006年   22篇
  2005年   16篇
  2004年   20篇
  2003年   26篇
  2002年   14篇
  2001年   13篇
  2000年   7篇
  1999年   5篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1989年   2篇
  1987年   1篇
  1984年   1篇
  1975年   1篇
排序方式: 共有503条查询结果,搜索用时 15 毫秒
141.
We investigated chemical and Sr isotopic composition of monthly rainwater collected on Peng-Chia-Yu (PCY) in northern Taiwan. Rainwater 87Sr/86Sr ratios, Na/Cl, Ca/Cl, Sr/Cl, Sr/Ca, NH4/Cl, NO3/Cl, SO4/Cl and Na/Sr, showed clear seasonal cycles, reflecting mixture of loess carbonates (high Ca/Sr and more radiogenic 87Sr/86Sr) and seawater (low Ca/Sr and intermediate 87Sr/86Sr). Model results showed that the former source contributes up to 45% during the winter monsoon period, but seawater is the dominant Sr source in rainwater (>50%) at other times. Two anomalously low 87Sr/86Sr values occurred in July and August 1998, coinciding with the Merapi eruption in Indonesia. Air-mass backward trajectories and the geochemical and isotopic compositions in rainwater and Merapi lava (i.e. Ca/Sr = 100 and 87Sr/86Sr = 0.705400) suggested that the Merapi eruption delivered ash across the western equatorial Pacific to PCY. Aerosols leaching experiments were conducted to examine the impact of the 1998 eruption, demonstrating that only a minor terrestrial signature can be extracted by distilled water, implying rapid dispatch of volcanic gases or high-efficiency dissolution of ash related substance in acidic rains.  相似文献   
142.
Airborne in-situ measurements were analyzed to investigate the effects of biomass burning and regional background aerosols on cloud condensation nuclei (CCN) activity in the Pacific Dust Experiment (PACDEX) during April and May 2007. Airmass trajectories with both horizontal and vertical motions were provided to identify the aerosol sources. In the biomass burning cases, the elevated aerosol layers were clearly observed at dry conditions because of the convection of airmass in the source region. The relative aging of aerosols was supported by the ratios of BC to particles with size ranging from 0.1 to 1.0 μm (N0.1–1.0) and BC to carbon monoxide. Compared to aerosols in the precedent plume of biomass burning, aged particles in the latter plume were more activated to CCN at 0.4% (CCN0.4%) than 0.1% supersaturation (CCN0.1%) due to aerosols chemical modification during the aging process. On the other hand, significant difference of CCN0.4% and CCN0.1% at regional background aerosols over the Pacific Ocean was due to the activated particles below 1 μm in diameter. Although higher concentrations of aged particles were observed over the eastern Pacific Ocean, activated aerosols to cloud droplet was comparatively similar in the western Pacific Ocean because of the similar concentrations of N0.1–1.0 in both cases.  相似文献   
143.
The characteristics of bubble properties and the chaotic flow behavior of gas were investigated in an annular fluidized bed (0.102 m in inner diameter and 2 m in height) because the behavior of gas flow in such a reactor is one of the important factors governing reactor operation, reactor performance, and the reaction itself. Pressure fluctuations as a state variable for the analysis of gas flow behavior were measured and analyzed. Bubble properties were determined by adopting the cross-correlation function of pressure fluctuations. The resultant chaotic flow behavior of gas was interpreted by means of chaotic parameters such as the Kolmogorov entropy. It was found that the Kolmogorov entropy could be utilized effectively to explain the nonlinear dynamic behavior of gas-solid flow in the annular fluidized bed. The pierced length and rising velocity of bubbles increased with increasing gas velocity, bed temperature, and particle size of the bed material. The bubble frequency increased with increasing gas velocity and bed temperature, while it decreased with increasing particle size of the bed material. Correlations to predict the bubble properties in annular fluidized-bed reactors were suggested.  相似文献   
144.
The aim of this research is to find the optimum smoke extraction rate through the ventilation shaft in case of a fire in a long road tunnel. Furthermore, it is also investigated whether the current emergency ventilation design practice using a vertical shaft can limit the smoke propagation from a fully loaded gasoline tank lorry fire. For this research, scaled model experiments were carried out using a 20 m- long model tunnel with a vertical shaft. A CFD modeling tool was also extensively utilized to investigate the extremely dangerous situation in which a fully loaded gasoline tank lorry is burning inside a long road tunnel.  相似文献   
145.
River and sediment have unique carbon dynamics and are important sources of the dominant greenhouse gases (GHG), carbon dioxide (CO2) and methane (CH4). To understand the relationship between CO2/CH4 emissions and water quality/sediment characteristics, we have investigated critical parameters in the river water. Eight parameters of water quality (dissolved oxygen, oxidation-reduction potential [ORP], chemical oxygen demand, biochemical oxygen demand [BOD5], suspended solid, nitrate [NO3-], NH4+, and bacteria) and four sediment characteristics (total organic carbon [TOC], total nitrogen [T-N], NO3-, and ammonium [NH4+]) were measured in two of the larger rivers in Taiwan, and relevant environmental conditions were recorded. The experimental results indicated that CO2 emissions from the river were mainly affected by BOD5 concentrations and the levels of bacteria. CH4 emissions, on the other hand, were greatly affected by the ORP in the river. The correlation between CO2 emissions and sediment characteristics was insignificant (R2 < 0.3). However, TOC and T-N in the sediment may lead to increases in CH4 emissions into the atmosphere. A deeper analysis of the relationship between the different parameters and GHG emissions by ANOVA and the multiple regression method revealed that CO2 emission (y) was significantly related to bacteria number (x1) and BOD concentration (X2). The regression equation takes the form y = 0.00032x1 + 3.18089x2 + 25.37304. Also, the regression relationship between CH4 emission (y) and ORP (x) in the river can be described as y = -0.825216x + 169.02257. The relationship between CH4 emission and sediment characteristics may be described as y = 5.073962x1(TOC) + 2.871245x2(T-N) - 12.3262. Extra sampling data were collected to examine the feasibility of the developed multiple regression equations. The experimental results suggest that the emissions of such GHGs as CO2 and CH4 from rivers can be predicted using the regression equations developed here. Moreover, the emissions may be reduced by manipulating the proper factors.  相似文献   
146.
This study compared three forecasting models based on the mean absolute percentage errors (MAPE) of their accuracy in forecasting air pollution in a traffic tunnel: the Grey model (GM), the combination model used four sample point and five sample point prediction with GM (1,1)(GM(1,1)4 + 5), and the modified grey model (MGM). An MGM was combined using the four points of the original sequence using the original grey prediction GM (1,1) for short-term forecasting. The proposed method cannot only enhance the prediction accuracy of the original grey model, but can also solve the jump data forecasting problem something for which the original grey model is inappropriate. The MAPE was applied to the models, and the MGM found the proposed method to be simple and efficient. The MAPE of MGM, calculated over 3 h of forecasts, were as follows: 10.12 (Upwind), 10.07 (Middle) and 7.68 (Downwind) for CO; 10.79 (Upwind), 6.05 (Middle) and 5.98 (Downwind) for NO x , and 11.67 (Upwind), 7.32 (Middle) and 4.56 (Downwind) for NMHC. The MGM model results reveal that the combined forecasts can significantly decrease the overall forecasting error. Results of this demonstrate that MGM can accurately forecast air pollution in the Kaohsiung Chung–Cheng Tunnel.  相似文献   
147.
This on-site survey study was performed to determine the concentrations and emissions of aerial contaminants in the different types of swine houses in Korea and then to present beneficial information available for Korean pig producers to manage optimal air quality in swine house. The swine houses investigated in this research were selected based on three criteria; manure removal system, ventilation mode and growth stage of swine. Mean concentrations of aerial pollutants in swine houses were 8 ppm for ammonia, 300 ppb for hydrogen sulfide, 2 mg m−3 for total dust, 0.6 mg m−3 for respirable dust, 4 log(cfu m−3) for total airborne bacteria and 3 log(cfu m−3) for total airborne fungi, respectively. Mean emissions based on pig (liveweight; 75 kg) and area (m2) were 250 and 340 mg h−1 for ammonia, 40 and 50 mg h−1 for hydrogen sulfide, 40 and 50 mg h−1 for total dust, 10 and 15 mg h−1 for respirable dust, 1.0 and 1.3 log(cfu) h−1 for total airborne bacteria and 0.7 and 1.0 log(cfu) h−1 for total airborne fungi, respectively. In general concentrations and emissions of gases were relatively higher in the swine houses managed with deep-pit manure system with slats and mechanical ventilation mode than the different swine housing types whereas those of particulates and bioaerosol were highest in the naturally ventilated swine houses with deep-litter bed system.  相似文献   
148.
The coast of the Korean peninsula experiences a range of human impacts, including pollution, shipping, reclamation, and aquaculture, that have motivated numerous local studies of macrobenthic organisms. In this paper, 1,492 subtidal stations were compiled from 23 studies (areas) to evaluate environmental quality on a broader scale. A common index in biomonitoring, Shannon–Wiener evenness proportion (SEP), could not incorporate azoic or single-species samples. This shortcoming was overcome by developing an inverse function of SEP (ISEP), which was positively correlated with independent measures of water quality available for nine sites and was not biased by the size of the sampling unit. Additionally, at Shihwa Dike, where samples were collected before and after reinstating a tidal connection with the ocean, ISEP values improved over time, as expected. Thus, it is now possible to assign Korean subtidal sites to seven ISEP “grades” and to use their values and trends to guide coastal management.  相似文献   
149.
The present study investigated the occurrence of 29 selected micropollutants such as endocrine disrupting compounds (EDCs) and pharmaceuticals and personal care products (PPCPs) in surface waters and wastewaters in Seoul (South Korea) during both dry and wet weather conditions. The study area was selected based on the lack of available information regarding the suspected contamination of rivers/creeks by EDCs and PPCPs in the Seoul region and the presence of a wastewater treatment plant (WWTP), which serves approximately 4.1 million inhabitants and has a design capacity of 1,297?×?103 m3/day. Many target compounds (83 %) were detected in samples collected from wastewater treatment influent/effluent, creek water, and combined sewer overflow (CSO). The total EDC/PPCP concentrations were as follows: WWTP influent (69,903 ng/L)?>?WWTP effluent (50,175 ng/L) >3 creek samples (16,035–44,446 ng/L) during dry weather, and WWTP influent (53,795 ng/L)?>?WWTP bypass (38,653 ng/L) >5 creek samples (15,260–29,113 ng/L) >2 CSO samples (11,109–11,498 ng/L) during wet weather. EDCs and PPCPs were found to be present at high daily loads (65.1 and 69.8 kg/day during dry and wet weather, respectively) in the WWTP effluent. Compound removal by the WWTP varied significantly by compound: caffeine, diclofenac, ibuprofen, naproxen, and propylparaben (>90 %), and acesulfame, DEET, iohexol, iopromide, and iopamidol (<5 %). These findings and literature information support the hypothesis that the efficiency of removal of EDCs and PPCPs is strongly dependent on both removal mechanism (e.g., biodegradation, adsorption to sludge, and oxidation by chlorine) and compound physicochemical properties (e.g., pK a and hydrophobicity).  相似文献   
150.
We investigated the contribution of volatile aerosols in light-absorption measurement by three filter-based optical instruments [aethalometer, continuous light-absorption photometer (CLAP), and continuous soot monitoring system (COSMOS)] at Gosan Climate Observatory (GCO) from February to June 2012. The aerosol absorption coefficient (σ abs) and the equivalent black carbon (BC) mass concentration (M BC) measured by the aethalometer and CLAP showed good agreement with a difference of 9 %, which is likely due to the instrumental uncertainty. However, σ abs and M BC measured by the COSMOS with a heated inlet were found to be approximately 44 and 49 % lower than those measured by the aethalometer and CLAP under ambient conditions, respectively. This difference can be attributed to the light absorption by the volatile aerosols coexisting with the BC. Even considering inherent observational uncertainty, it suggests that approximately 35–40 % difference in the σ abs and M BC can be contributed by volatile aerosols. Increase in the difference of M BC measured by the aethalometer and COSMOS with the increasing thermal organic carbon (OC) measured by Sunset OC/EC analyzer further suggests that the filter-based optical instruments without the use of a heater are likely to enhance the value of σ abs and M BC, because this sample air may contain both BC and volatile aerosols.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号