首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33883篇
  免费   288篇
  国内免费   144篇
安全科学   887篇
废物处理   1358篇
环保管理   4655篇
综合类   5713篇
基础理论   9331篇
环境理论   14篇
污染及防治   8528篇
评价与监测   2056篇
社会与环境   1547篇
灾害及防治   226篇
  2022年   222篇
  2021年   259篇
  2020年   226篇
  2019年   302篇
  2018年   426篇
  2017年   431篇
  2016年   692篇
  2015年   507篇
  2014年   758篇
  2013年   2593篇
  2012年   938篇
  2011年   1321篇
  2010年   1089篇
  2009年   1071篇
  2008年   1377篇
  2007年   1405篇
  2006年   1295篇
  2005年   1063篇
  2004年   1099篇
  2003年   1041篇
  2002年   985篇
  2001年   1291篇
  2000年   919篇
  1999年   558篇
  1998年   448篇
  1997年   445篇
  1996年   464篇
  1995年   528篇
  1994年   522篇
  1993年   453篇
  1992年   476篇
  1991年   447篇
  1990年   488篇
  1989年   461篇
  1988年   403篇
  1987年   376篇
  1986年   338篇
  1985年   329篇
  1984年   400篇
  1983年   355篇
  1982年   403篇
  1981年   361篇
  1980年   294篇
  1979年   323篇
  1978年   281篇
  1977年   233篇
  1975年   229篇
  1974年   250篇
  1973年   239篇
  1972年   247篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
521.
Comprehensive mitigation strategies for gaseous emissions from broiler operations requires knowledge of the litters' physical and chemical properties, gas evolution, bird effects, as well as broiler house management and structure. This research estimated broiler litter surface fluxes for ammonia (NH3), nitrous oxide (N2O), and carbon dioxide (CO2). Ancillary measurements of litter temperature, litter total N, ammonium (NH4+), total C content, moisture, and pH were also made. Grid sampling was imposed over the floor area of two commercial broiler houses at the beginning (Day 1), middle (Day 23), and end (Day 43) of a winter and subsequent summer flock housed on reused pine shavings litter. The grid was composed of 36 points, three locations across the width, and 12 locations down the length of the houses. To observe feeder and waterer (F/W) influences on the parameters, eight additional sample locations were added in a crisscross pattern among these automated supply lines. Color variograms illustrate the nature of parameter changes within each flock and between seasons. Overall trends for the NH3, N2O, and CO2 gas fluxes indicate an increase in magnitude with bird age during a flock for both summer and winter, but flux estimates were reduced in areas where compacted litter (i.e., caked litter or cake) formed at the end of the flocks (at F/W locations and in the fan area). End of flock gas fluxes were estimated at 1040 mg NH3 m(-2) h(-1), 20 mg N2O m(-2) h(-1), and 24,200 mg CO2 m(-2) h(-1) in winter; and 843 mg NH3 m(-2) h(-1), 18 mg N2O m(-2) h(-1)), and 27,200 mg CO2 m(-2) h(-1) in summer. The results of intensive sample efforts during winter and summer flocks, reported visually using contour plots, offer a resource to the poultry industry and researchers for creating new management strategies for improving production and controlling gas evolution. Particularly, efforts could focus on designing housing systems that minimize extremes in litter compaction. The extremes are undesirable with more friable litter prone to greater gas evolution and more compacted litter providing a slippery, disease-sustaining surface.  相似文献   
522.
The Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) have recently launched themselves as the UN-sanctioned instrument for conserving nature. They seek to establish themselves as the authority in this field alongside the well-known Intergovernmental Panel on Climate Change in climate science. Quickly following or even before recent publication of their conceptual framework in two biology journals, they were already underway building upon it. This headlong push, we believe, is ill advised. We show how the framework is unsound as a foundation for further work—in a number of ways and perhaps even by its authors’ own lights. It is therefore urgent that the IPBES thoroughly and thoughtfully reconsider their framework before too much effort is wasted.  相似文献   
523.
Abstract: A practical methodology is proposed to estimate the three‐dimensional variability of soil moisture based on a stochastic transfer function model, which is an approximation of the Richard’s equation. Satellite, radar and in situ observations are the major sources of information to develop a model that represents the dynamic water content in the soil. The soil‐moisture observations were collected from 17 stations located in Puerto Rico (PR), and a sequential quadratic programming algorithm was used to estimate the parameters of the transfer function (TF) at each station. Soil texture information, terrain elevation, vegetation index, surface temperature, and accumulated rainfall for every grid cell were input into a self‐organized artificial neural network to identify similarities on terrain spatial variability and to determine the TF that best resembles the properties of a particular grid point. Soil moisture observed at 20 cm depth, soil texture, and cumulative rainfall were also used to train a feedforward artificial neural network to estimate soil moisture at 5, 10, 50, and 100 cm depth. A validation procedure was implemented to measure the horizontal and vertical estimation accuracy of soil moisture. Validation results from spatial and temporal variation of volumetric water content (vwc) showed that the proposed algorithm estimated soil moisture with a root mean squared error (RMSE) of 2.31% vwc, and the vertical profile shows a RMSE of 2.50% vwc. The algorithm estimates soil moisture in an hourly basis at 1 km spatial resolution, and up to 1 m depth, and was successfully applied under PR climate conditions.  相似文献   
524.
    
Abstract:  The state of Michigan is interested in removing two low‐head dams in an 8.8 km reach of the Kalamazoo River between Plainwell and Otsego, Michigan, while minimizing impacts locally and to downstream reaches. The study was designed to evaluate the erosion, transport, and deposition of sediments over a 37.3‐year period using the channel evolution model CONCEPTS for three simulation scenarios: Dams In (DI), Dams Out (DO), and Design (D). The total mass of sediment emanating from the channel boundary, for the DI case, shows net deposition of 4,100 T/y for the study reach, with net transport (suspended and bed load) of 10,500 T/y passing the downstream boundary. For the DO case, net erosion is 19,200 T/y with net transport of 30,100 T/y (187% increase) passing the downstream boundary. For the D case, net deposition is 2,570 T/y (37% decrease) with transport of 14,200 T/y (35% increase) passing the downstream boundary. The most significant findings were: (1) removal of the low‐head dams will cause significant erosion of sediments stored behind the dams and increased sediment loads passing the downstream boundary and (2) sediment loads for the proposed channel design are similar to existing conditions and offer reduced fine‐sediment loadings.  相似文献   
525.
526.
    
ABSTRACT: The Powder River Basin in Wyoming has become one of the most active areas of coalbed methane (CBM) development in the western United States. Extraction of methane from coalbeds requires pumping of aquifer water, which is called product water. Two to ten extraction wells are manifolded into one discharge point and product water is released into nearby unlined holding ponds. The objective of this study was to evaluate the chemistry, salinity, and sodicity of CBM product water at discharge points and associated holding ponds as a function of watershed. The product water samples from the discharge points and associated holding ponds were collected from the Cheyenne River (CHR), Belle Fourche River (BFR), and Little Powder River (LPR) watersheds during the summers of 1999 and 2000. These samples were analyzed for pH, electrical conductivity (EC), total dissolved solids (TDS), alkalinity, sodium (Na), calcium (Ca), magnesium (Mg), potassium (K), sulfate (SO42‐), and chloride (C1‐). From the chemical data, practical sodium adsorption ratio (SARp) and true sodium adsorption ratio (SARt) were calculated for the CBM discharge water and pond water. The pH, EC, TDS, alkalinity, Na, Ca, Mg, K, SARp, and SARt of CBM discharge water increased significantly moving north from the CHR watershed to the LPR watershed. CBM discharge water in associated holding ponds showed significant increases in EC, TDS, alkalinity, Na, K, SARp, and SARt moving north from the CHR to the LPR watershed. Within watersheds, the only significant change was an increase in pH from 7.21 to 8.26 between discharge points and holding ponds in the LPR watershed. However, the LPR and BFR exhibited larger changes in mean chemistry values in pH, salinity (EC, TDS), and sodicity (SAR) between CBM product water discharges and associated holding ponds than the CHR watershed. For instance, the mean EC and TDS of CBM product water in LPR increased from 1.93 to 2.09 dS/m, and froml,232 to 1,336 mg/L, respectively, between discharge and pond waters. The CHR exhibited no change in EC, TDS, Na, or SAR between discharge water and pond water. Also, while not statistically significant, mean alkalinity of CBM product water in BFR and LPR watersheds decreased from 9.81 to 8.01 meq/L and from 19.87 to 18.14 meq/L, respectively, between discharge and pond waters. The results of this study suggest that release of CBM product water onto the rangelands of BFR and LPR watersheds may precipitate calcium carbonate (CaCO3) in soils, which in turn may decrease infiltration and increase runoff and erosion. Thus, use of CBM product water for irrigation in LPR and BFR watersheds may require careful planning based on water pH, EC, alkalinity, Na, and SAR, as well as local soil physical and chemical properties.  相似文献   
527.
Vegetative treatment areas (VTAs) are commonly being used as an alternative method of agricultural process wastewater treatment. However, it is also apparent that to completely prevent discharge of pollutants to the surrounding environment, settling of particulates and bound constituents from overland flow through VTAs is not sufficient. For effective remediation of dissolved agricultural pollutants, VTAs must infiltrate incoming wastewater. A simple water balance model for predicting VTA soil saturation and surface discharge in landscapes characterized by sloping terrain and a shallow restrictive layer is presented and discussed. The model accounts for the cumulative effect of successive rainfall events and wastewater input on soil moisture status and depth to water table. Nash–Sutcliffe efficiencies ranged from 0.65 to 0.81 for modeled and observed water table elevations after calibration of saturated hydraulic conductivity. Precipitation data from relatively low, average, and high annual rainfall years were used with soil, site, and contributing area data from an example VTA for simulations and comparisons. Model sensitivity to VTA width and contributing area (i.e. barnyard, feedlot, silage bunker, etc.) curve number was also investigated. Results of this analysis indicate that VTAs should be located on steeper slopes with deeper, more-permeable soils, which effectively lowers the shallow water table. In sloping landscapes (>2%), this model provides practitioners an easy-to-use VTA design and/or risk assessment tool that is more hydrological process-based than current methods.  相似文献   
528.
Phosphorus saturation in spodosols impacted by manure   总被引:1,自引:0,他引:1  
Significant amounts of phosphorus (P) accumulate in soils receiving animal manures that could eventually result in unacceptable concentrations of dissolved P loss through surface runoff or subsurface leaching. The degree of phosphorus saturation (DPS) relates a soil's extractable P to its P sorbing capacity, and is reportedly a predictor of the P likely to be mobilized from a system. A DPS value (DPS-1) was derived that expressed the percentage of Mehlich 1-extractable P to the sorbing capacity of a Spodosol (expressed as the sum of oxalate-extractable Fe and Al). Values of DPS-1 were determined in various horizons of soil in current and abandoned dairy systems in South Florida's Lake Okeechobee watershed to assess P release potential. Land use within the dairies was classified as highly impacted by cattle (intensive and holding), and minimally impacted by cattle (pasture, forage, or native) areas. The A and E horizon of soils in heavily manure-impacted intensive and holding areas for both active and abandoned dairies generally had higher DPS-1 values than the pasture, forage, and native area soils, which were minimally impacted by manure. Degree of P saturation was also calculated as a percentage of Mehlich 1-extractable P to the sum of Mehlich 1-extractable Fe and Al (DPS-2). Both DPS-1 and DPS-2 were shown to be significantly (P = 0.0001) related to water-extractable P for all soil horizons, suggesting that either index can be used as an indicator for P loss potential from a soil.  相似文献   
529.
530.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号