首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5040篇
  免费   139篇
  国内免费   62篇
安全科学   271篇
废物处理   194篇
环保管理   1253篇
综合类   547篇
基础理论   1383篇
环境理论   9篇
污染及防治   1031篇
评价与监测   319篇
社会与环境   178篇
灾害及防治   56篇
  2023年   60篇
  2022年   56篇
  2021年   56篇
  2020年   63篇
  2019年   69篇
  2018年   122篇
  2017年   133篇
  2016年   180篇
  2015年   122篇
  2014年   161篇
  2013年   409篇
  2012年   234篇
  2011年   307篇
  2010年   205篇
  2009年   238篇
  2008年   267篇
  2007年   260篇
  2006年   230篇
  2005年   206篇
  2004年   191篇
  2003年   152篇
  2002年   144篇
  2001年   91篇
  2000年   97篇
  1999年   69篇
  1998年   76篇
  1997年   60篇
  1996年   63篇
  1995年   80篇
  1994年   75篇
  1993年   66篇
  1992年   68篇
  1991年   39篇
  1990年   35篇
  1989年   39篇
  1988年   35篇
  1987年   42篇
  1986年   41篇
  1985年   42篇
  1984年   45篇
  1983年   47篇
  1982年   53篇
  1981年   44篇
  1980年   35篇
  1979年   17篇
  1978年   33篇
  1977年   16篇
  1976年   16篇
  1972年   8篇
  1971年   11篇
排序方式: 共有5241条查询结果,搜索用时 15 毫秒
991.
Even though it is well established that soil C content is the primary determinant of the sorption affinity of soils for non-ionic compounds, it is also clear that organic carbon-normalized sorption coefficients (K(OC)) vary considerably between soils. Two factors that may contribute to K(OC) variability are variations in organic matter chemistry between soils and interactions between organic matter and soil minerals. Here, we quantify these effects for two non-ionic sorbates-diuron and phenanthrene. The effect of organic matter-mineral interactions were evaluated by comparing K(OC) for demineralized (HF-treated) soils, with K(OC) for the corresponding whole soils. For diuron and phenanthrene, average ratios of K(OC) of the HF-treated soils to K(OC) of the whole soils were 2.5 and 2.3, respectively, indicating a substantial depression of K(OC) due to the presence of minerals in the whole soils. The effect of organic matter chemistry was determined by correlating K(OC) against distributions of C types determined using solid-state (13)C NMR spectroscopy. For diuron, K(OC) was positively correlated with aryl C and negatively correlated with O-alkyl C, for both whole and HF-treated soils, whereas for phenanthrene, these correlations were only present for the HF-treated soils. We suggest that the lack of a clear effect of organic matter chemistry on whole soil K(OC) for phenanthrene is due to an over-riding influence of organic matter-mineral interactions in this case. This hypothesis is supported by a correlation between the increase in K(OC) on HF-treatment and the soil clay content for phenanthrene, but not for diuron.  相似文献   
992.
Paper mill effluents may contain polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) that are normally generated due to chlorinated bleaching of pulp and paper. We used the semipermeable membrane device (SPMD) to monitor PCDD/F levels upstream and downstream of a paper mill on the Androscoggin River, in Jay (ME). Following the 36 day deployment, SPMD dialysis and cleanup, the samples were analyzed by HRGC/HRMS. Total concentrations of PCDD/Fs in SPMDs (sum of all tetra-through octachlorinated congeners) ranged from 4.71 pg g(-1) to 26.26 pg g(-1). Five out of the targeted 17 toxic congeners were detected, including: 2,3,7,8-TCDF; 1,2,3,7,8-PeCDF; 2,3,4,7,8-PeCDF; 1,2,3,4,6,7,8-HpCDD and OCDD. Permeability reference compounds (PRCs) were used for in situ calibration of the SPMD sampling rate (Rs). In all sites, water concentrations were the highest for OCDD (0.081-0.103 pg l(-1)), and the lowest for 1,2,3,7,8-PeCDF (0.005-0.009 pg l(-1)). There was not a consistent pattern of upstream-downstream gradient in the PCDD/F levels. This suggested that processes other than the mill in Jay (multiple sources, river dynamics) governed the flux of PCDD/Fs in the sampling locations. The SPMD results were validated by comparison to other studies on the Androscoggin River and elsewhere, confirming the potential of the device as a useful monitoring technique for PCDD/Fs in large river systems.  相似文献   
993.
Edwards C  Graham D  Fowler N  Lawton LA 《Chemosphere》2008,73(8):1315-1321
Microcystin-LR (MC-LR) was readily biodegraded on addition to six different water samples irrespective of their previous exposure to microcystins. Subsequent studies with water from three of these water bodies confirmed the degradation of MC-LR and also demonstrated the biodegradation of MC-LF, nodularin and mixture of microcystins and nodularin. Rates of degradation of MC-LR, MC-LF and NOD in individual water samples ranged from a half-life of 4 to 18d. Analysis by HPLC-PDA-ESI+ and MALDI MS/MS revealed novel intermediate degradation products of MC-LF and nodularin which included demethylation, hydrolysis, decarboxylation and condensation of the parent compound(s). Our study suggests a possible diversity of micro-organisms and/or pathways which has not been previously observed.  相似文献   
994.
An in situ arsenic removal method applicable to highly contaminated water is presented. The method is based in the use of steel wool, lemon juice and solar radiation. The method was evaluated using water from the Camarones River, Atacama Desert in northern Chile, in which the arsenic concentration ranges between 1000 and 1300 μg L−1. Response surface method analysis was used to optimize the amount of zero-valent iron (steel wool) and the citrate concentration (lemon juice) to be used. The optimal conditions when using solar radiation to remove arsenic from natural water from the Camarones river are: 1.3 g L−1 of steel wool and one drop (ca. 0.04 mL) of lemon juice. Under these conditions, removal percentages are higher than 99.5% and the final arsenic concentration is below 10 μg L−1. This highly effective arsenic removal method is easy to use and inexpensive to implement.  相似文献   
995.
The following explores the issue of how reductions in contaminant loading to plumes will effect downgradient water quality. An idealized scenario of two adjacent layers of uniform geologic media, one transmissive and the other low permeability, is considered. A high concentration source, similar to a thin DNAPL pool, is introduced in the transmissive layer immediately above the low permeability layer. While the source is active, dissolved constituents are driven along the contact by advection and into the low permeability layer by transverse diffusion. Removing the source reverses the concentration gradient between the layers, driving back diffusion of contaminants from the low permeability layer. Laboratory studies involving four contaminants demonstrate that 15 to 44% of the introduced contaminant moves into the low permeability zone (along a distance of 87 cm in a sand tank) over a period of 25 days. The greatest movement of contaminants into the low permeability zone is seen with the contaminants with the greatest sorption coefficients. A unique two-dimensional analytical solution is developed for the two-layer scenario. Processes addressed include advection; transverse dispersion; adsorption and degradation in the transmissive zones; and diffusion, adsorption, and degradation in the low permeability layer. Laboratory data agree favorably with the analytical solutions. Collectively, the laboratory results and analytical solutions provide a basis for testing other modeling approaches that can be applied to more complex problems. A set of field-scale scenarios are considered using the analytical solutions. Results indicate that improvement in water quality associated with source removal diminish with distance downgradient of the source. Furthermore, contaminant degradation and contaminant adsorption in the stagnant zone are shown to be critical factors governing the timing and magnitude of downgradient improvements in water quality. For five of six scenarios considered, observed improvements in water quality 100 m downgradient of the source fall in the range of 1 to 2 orders of magnitude 15 years after complete source removal. The sixth scenario, involving a contaminant half-life of three years and no adsorption, shows greater than three order of magnitude improvements in downgradient water quality within one year of source removal.  相似文献   
996.
Cyclodextrins: a new efficient absorbent to treat waste gas streams   总被引:1,自引:0,他引:1  
Volatile Organic Compounds (VOCs) in the air provoke health and environmental concerns. This paper focuses on the absorption method to treat industrial polluted air loaded with VOCs. The key variable of this treatment being the choice of a suitable liquid absorbent, the aim of this research work is to investigate the effectiveness and the regeneration of a new potential family of absorbent: cyclodextrins (CDs). All CDs derivatives tested are able to decrease the Henry's law constant of toluene: a reduction of volatility up to 95% may be obtained, depending on CD nature and concentration. Moreover, absorption experiments show that beta-CD, which presents the highest absorption ability, is 250 time more efficient than water. The absorption efficiency is not totally correlated with static experiments, suggesting that, in addition to Henry's law constants and inclusion compounds stability, toluene diffusion into such solutions has to be taken into account. It is also to be noted that salt and pH variations seem to have little influence on the absorption capacity of CDs, which may be of great interest for industrial applications. Finally, since production of solid compounds was not observed during these experiments and since temperature decreases the capture ability in a drastic way, regeneration of the washing solution can be achieved by heating the solution in combination with air stripping.  相似文献   
997.
Organic matter has long been recognized as the main sorbent phase in soils for hydrophobic organic compounds (HOCs). In recent times, there has been an increasing realization that not only the amount, but also the chemical composition, of organic matter can influence the sorption properties of a soil. Here, we show that the organic carbon-normalized sorption coefficient (K(OC)) for diuron is 27-81% higher in 10 A11 horizons than in 10 matching A12 horizons for soils collected from a small (2ha) field. K(OC) was generally greater for the deeper (B) horizons, although these values may be inflated by sorption of diuron to clays. Organic matter chemistry of the A11 and A12 horizons was determined using solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. K(OC) was positively correlated with aryl C (r2=0.59, significance level 0.001) and negatively correlated with O-alkyl C (r2=0.84, significance level <0.001). This is only the second report of correlations between whole soil K(OC) and NMR-derived measures of organic matter chemistry. We suggest that this success may be a consequence of limiting this study to a very small area (a single field). There is growing evidence that interactions between organic matter and clay minerals strongly affect K(OC). However, because the soil mineralogy varies little across the field, the influence of these interactions is greatly diminished, allowing the effect of organic matter chemistry on K(OC) to be seen clearly. This study in some way reconciles studies that show strong correlations between K(OC) and the chemistry of purified organic materials and the general lack of such correlations for whole soils.  相似文献   
998.
Landry D  Dousset S  Andreux F 《Chemosphere》2004,54(6):735-742
The leaching of diuron and oryzalin through undisturbed soil columns was studied in the laboratory using three vineyard soils from Vosne-Romanée (Burgundy): a rendosol, a calcosol and a vegetated calcosol. After 845 mm of simulated rainfall in 15 days, soil leachates contained higher amounts of diuron (3.2%, 11.8% and 18.8% of applied diuron, respectively) than oryzalin (0.2%, 4.9%, 3.7%, respectively). A greater proportion of soil extractable residues was obtained for diuron (42.5%, 26.8% and 32.2%, respectively) than for oryzalin (14.7%, 12% and 15.5%, respectively). The greater mobility of diuron might be related to its higher water solubility (36.4 mgl(-1) compared with 2.6 mgl(-1) for oryzalin) and smaller adsorption coefficient (400 lkg(-1), compared with 700-1100 lkg(-1) for oryzalin). The mobility of the two herbicides was greater in the two calcosols than in the rendosol, not only due to different organic carbon contents but also different soil textures and structures.  相似文献   
999.

The interaction of nanoplastics (NPls) and engineered nanoparticles (ENPs) with organic matter and environmental pollutants is particularly important. Therefore, their behavior should be investigated under the different salinity conditions, mimicking rivers and coastal environments, to understand this phenomenon in those areas. In this work, we analyzed the elementary characteristics of polystyrene-PS (unmodified surface and modified with amino or carboxyl groups) and titanium dioxide-TiO2 nanoparticles. The effect of salinity on their colloidal properties was studied too. Also, the interaction with different types of proteins (bovine serum albumin-BSA and tilapia proteins), as well as the formation of the BSA corona and its effect on the colloidal stability of nanoparticles, were evaluated. The morphology and dispersion of sizes were more uniform in unmodified-surface PS-NPs (70.5?±?13.7 nm) than in TiO2-NPs (131.2?±?125.6 nm). Likewise, Rama spectroscopy allowed recognizing peaks associated with the PS phenyl group aromatic ring in unmodified-surface PS-NPs (621, 1002, 1582, and 1602 cm?1). For TiO2-NPs, the data suggest belonging to the tetragonal form, also known as rutile (445, 610 cm?1). The elevation of salinity dose-dependently decreased NP colloid stability, with more significant variation in the PS-NPs compared to TiO2-NPs. The organic matter is also involved in this phenomenon, differentially as a function of time compared to its absence (unmodified-surface PS-NPs 30 psu/TOC 5 mgL?1/24 h: 2876.6?±?378.03 nm; unmodified-surface PS-NPs 30 psu/24 h: 2133?±?49.57 nm). In general, the TiO2-NPs demonstrated greater affinity with all proteins tested (0.066 g/L). It was observed that morphology, size, and surface chemical modification intervene in a relevant way in the interaction of the nanoparticles with bovine serum albumin (unmodified-surface PS-NPs 298 K: 6.08E+02; 310 K: 6.63E+02; TiO2-NPs 298 K: 8.76E+02; 310 K: 1.05E+03 L mol?1) and tilapia tissues proteins (from blood, gills, liver, and brain). Their morphology and size also determined the protein corona formation and the NPs’ agglomeration. These findings can provide references during knowledge transfer between NPls and ENPs.

  相似文献   
1000.
To reduce fresh water consumption in a polyvinyl chloride (PVC) plant, the effluent from a biological treatment must be demineralized to be re-used in the resin polymerization process. Demineralization is a critical process, since the quality and the stability of the PVC resins are highly influenced by the water quality used in the process. The main target values for water parameters are the following: conductivity <10 μScm?1, TOC < 10 mg L?1, and Al < 0.1 mg L?1. To achieve this quality, several reverse osmosis membranes from different materials and suppliers were tested and compared in the demineralization treatment. Polyamide membranes showed higher salt rejection compared to cellulose acetate membranes yielding both types similar flux and permeability. Two-pass reverse osmosis treatment was necessary to reach conductivities lower than 10 μS cm?1. On the other hand, a good quality effluent for reuse was obtained by combining RO and ionic exchange resins. Results showed that good quality PVC resins in terms of color, granulometry, porosity, and bulk density were obtained when demineralized water from two-pass reverse osmosis was used as fresh water, proving the feasibility of the effluent reuse in the PVC industry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号