首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   282篇
  免费   2篇
  国内免费   1篇
安全科学   8篇
废物处理   8篇
环保管理   37篇
综合类   74篇
基础理论   52篇
污染及防治   68篇
评价与监测   18篇
社会与环境   18篇
灾害及防治   2篇
  2024年   1篇
  2023年   4篇
  2022年   13篇
  2021年   10篇
  2020年   14篇
  2019年   6篇
  2018年   14篇
  2017年   17篇
  2016年   16篇
  2015年   12篇
  2014年   7篇
  2013年   26篇
  2012年   14篇
  2011年   13篇
  2010年   11篇
  2009年   13篇
  2008年   8篇
  2007年   13篇
  2006年   14篇
  2005年   6篇
  2004年   4篇
  2003年   5篇
  2002年   6篇
  2001年   4篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1996年   2篇
  1995年   5篇
  1994年   1篇
  1993年   4篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1989年   4篇
  1988年   3篇
  1987年   1篇
  1985年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有285条查询结果,搜索用时 157 毫秒
281.

Mapping social vulnerability is a prominent way to identify regions in which the lack of capacity to cope with the impacts of weather extremes is nested in the social setting, aiding climate change adaptation for vulnerable residents, neighborhoods, or localities. Calculating social vulnerability usually involves the construction of a composite index, for which several construction methods have been suggested. However, thorough investigation of results across methods or applied weighting of vulnerability factors is largely missing. This study investigates the outcome of the variable addition—both with and without weighting of single vulnerability factors—and the variable reduction approach/model on social vulnerability indices calculated for New York City. Weighting is based on scientific assessment reports on climate change impacts in New York City. Additionally, the study calculates the outcome on social vulnerability when using either area-based (person/km2) or population-based (%) input data. The study reveals remarkable differences between indices particularly when using different methods but also when using different metrics as input data. The variable addition model has deductive advantages, whereas the variable reduction model is useful when the strength of factors of social vulnerability is unknown. The use of area-based data seems preferable to population-based data when differences are taken as a measure of credibility and quality. Results are important for all forms of vulnerability mapping using index construction techniques.

  相似文献   
282.
Waste from the beneficiation of fish was composted with crushed grass aiming to characterize their chemical composition and investigate the possibility of the use of the final compost as source of humic acids (HA) able to stimulate the growth of lettuce. Compost presented pH value, C/N ratio, and electrical conductivity that allow its use as an organic fertilizer. The element content was present in the following order of abundance in the compost: P?>?Ca?>?N?>?Mg?>?K?>?Fe?>?Zn?>?Mn?>?Mo?>?Cu, and the humus composition was similar to that observed in others kind of organic residues composted. The high content of oxygen pointed out a high level of oxidation of HA, in line with the predominance of phenolic acidity in the functional groups. The 13C-NMR spectra showed marked resonances due to the presence of lipids and other materials resistant to degradation as methoxy substituent and N-alkyl groups. A concentration of 20 mg L?1 HA increased significantly both dry and wet root matter in lettuce but the CO2 assimilation, stomatal conductance, and number of lateral roots of the plants were not affected. However, increases of 64% in the water-use efficiency was observed due to the HA addition, probably related to the root morphology alteration which resulted in 1.6-fold increase of lateral root average length and due to the higher H+ extrusion activity. Reuse of residues from the fish beneficiation activity by composting may represent a safe tool to increase the value of recycled organic residues and generate HA with potential use as plant growth stimulants.  相似文献   
283.
Environmental Science and Pollution Research - A real industrial effluent from the pre-treatment and painting processes was polished through adsorption using alternative biochar derived from grape...  相似文献   
284.

Old forests containing ancient trees are essential ecosystems for life on earth. Mechanisms that happen both deep in the root systems and in the highest canopies ensure the viability of our planet. Old forests fix large quantities of atmospheric CO2, produce oxygen, create micro-climates and irreplaceable habitats, in sharp contrast to young forests and monoculture forests. The current intense logging activities induce rapid, adverse effects on our ecosystems and climate. Here we review large old trees with a focus on ecosystem preservation, climate issues, and therapeutic potential. We found that old forests continue to sequester carbon and fix nitrogen. Old trees control below-ground conditions that are essential for tree regeneration. Old forests create micro-climates that slow global warming and are irreplaceable habitats for many endangered species. Old trees produce phytochemicals with many biomedical properties. Old trees also host particular fungi with untapped medicinal potential, including the Agarikon, Fomitopsis officinalis, which is currently being tested against the coronavirus disease 2019 (COVID-19). Large old trees are an important part of our combined cultural heritage, providing people with aesthetic, symbolic, religious, and historical cues. Bringing their numerous environmental, oceanic, ecological, therapeutic, and socio-cultural benefits to the fore, and learning to appreciate old trees in a holistic manner could contribute to halting the worldwide decline of old-growth forests.

  相似文献   
285.
Environmental Science and Pollution Research - Anthropogenic pollution and global climate change have resulted in favorable environmental conditions for increased frequency and duration of...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号