首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50744篇
  免费   587篇
  国内免费   640篇
安全科学   1729篇
废物处理   2364篇
环保管理   6689篇
综合类   8151篇
基础理论   13330篇
环境理论   25篇
污染及防治   12791篇
评价与监测   3456篇
社会与环境   3109篇
灾害及防治   327篇
  2023年   228篇
  2022年   480篇
  2021年   531篇
  2020年   362篇
  2019年   445篇
  2018年   774篇
  2017年   802篇
  2016年   1193篇
  2015年   928篇
  2014年   1404篇
  2013年   4101篇
  2012年   1729篇
  2011年   2349篇
  2010年   1912篇
  2009年   1939篇
  2008年   2333篇
  2007年   2328篇
  2006年   2069篇
  2005年   1780篇
  2004年   1683篇
  2003年   1737篇
  2002年   1577篇
  2001年   1929篇
  2000年   1370篇
  1999年   834篇
  1998年   609篇
  1997年   622篇
  1996年   632篇
  1995年   749篇
  1994年   706篇
  1993年   595篇
  1992年   633篇
  1991年   625篇
  1990年   609篇
  1989年   573篇
  1988年   505篇
  1987年   449篇
  1986年   414篇
  1985年   427篇
  1984年   469篇
  1983年   442篇
  1982年   463篇
  1981年   386篇
  1980年   310篇
  1979年   340篇
  1978年   301篇
  1977年   228篇
  1975年   245篇
  1973年   232篇
  1972年   244篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
311.
The skin is the part of the human body most vulnerable to ultraviolet (UV) radiation. The spectrum of the negative effects of UV radiation on the skin ranges from acute erythema to carcinogenesis. Between these extreme conditions, there are other common skin lesions, e.g.,photoageing. The aim of this study was to assess the skin for signs of photoageing in a group of 52 men occupationally exposed to natural UV radiation. There were 2 types of examinations: an examination of skin condition (moisture, elasticity, sebum, porosity, smoothness, discolourations and wrinkles) with a device for diagnosing the skin, and a dermatological examination. The results of both examinations revealed a higher percentage of skin characteristics typical for photoageing in outdoor workers compared to the general population.  相似文献   
312.
This article focuses on employee direct participation in occupational health and safety (OHS) management. The article explains what determines employee opportunities to participate in OHS management. The explanatory framework focuses on safety culture and safety management at workplaces. The framework is empirically tested using Estonian cross-sectional, multilevel data of organizations and their employees. The analysis indicates that differences in employee participation in OHS management in the Estonian case could be explained by differences in OHS management practices rather than differences in safety culture. This indicates that throughout the institutional change and shift to the European model of employment relations system, change in management practices has preceded changes in safety culture which according to theoretical argument is supposed to follow culture change.  相似文献   
313.
In semi-trailer assembly, workers are exposed to several physical risk factors. Awkward working postures have not yet been investigated in semi-trailer assembly, although they are known to be a major risk factor for musculoskeletal disorders. We therefore conducted a comprehensive ergonomic analysis of working postures using the Ovako working posture analysing system (OWAS), with an individual sampling strategy. The postural load in semi-trailer assembly was assessed on the basis of 20,601 observations of 63 workers executing a representative set of nine work tasks. According to the OWAS, the postural load of various working postures and body part positions may have a harmful effect on the musculoskeletal system. We therefore give examples of corrective measures that could improve awkward working postures. Applying an individual sampling strategy was revealed to have advantages over a collective strategy, so this is recommended for future ergonomic analyses.  相似文献   
314.
Quantifying the risk of accidental ignition of flammable mixtures is extremely important in industry and aviation safety. The concept of a minimum ignition energy (MIE), obtained using a capacitive spark discharge ignition source, has traditionally formed the basis for determining the hazard posed by fuels. While extensive tabulations of historical MIE data exist, there has been little work done on ignition of realistic industrial and aviation fuels, such as gasoline or kerosene. In the current work, spark ignition tests are performed in a gaseous kerosene–air mixture with a liquid fuel temperature of 60 °C and a fixed spark gap of 3.3 mm. The required ignition energy was examined, and a range of spark energies over which there is a probability of ignition is identified and compared with previous test results in Jet A (aviation kerosene). The kerosene results are also compared with ignition test results obtained in previous work for traditional hydrogen-based surrogate mixtures used in safety testing as well as two hexane–air mixtures. Additionally, the statistical nature of spark ignition is discussed.  相似文献   
315.
This paper presents results of an experimental investigation on the deflagration and deflagration-to-detonation transition (DDT) in an obstructed (blockage ratio BR = 50%), semi-confined flat layer filled with uniform hydrogen–air mixtures. The effect of mixture reactivity depending on flat layer thickness and its width is studied to evaluate the critical conditions for sonic flame propagation and the possibility for detonation onset. The experiments were performed in a transparent, rectangular channel with a length of 2.5 m. The flat layer thickness was varied from 0.06 to 0.24 m and the experiments were performed for different channel widths of 0.3, 0.6 and 0.9 m. The experimental results show flame velocity vs. hydrogen concentration for different thicknesses and widths of the semi-confined flat layer. Three different flame propagation regimes were observed: slow subsonic flame (M << 1), sonic deflagration (M ~ 1) and detonation (M >> 1). It is shown that flame acceleration (FA) to sonic speed is independent of the width of the flat layer. The critical expansion ratio for effective flame acceleration to sonic speed was found to be linearly dependent on the reciprocal layer thickness.  相似文献   
316.
This paper describes the results of the first experimental stage of Phase IV of a Joint Industry Project (JIP) on liquid jets and two-phase droplet dispersion. The objective of this stage of the JIP was to generate experimental rainout data for non-flashing water and xylene experiments. See the overview companion paper I for a wider overview of the problem, model implementation and associated model validation.A range of orifice sizes (2.5 and 5 mm) and stagnation pressures (4–16 barg) were applied. Measurements included flow rate, initial droplet size, plume concentrations/temperatures for a range of downstream locations, and distributed rainout.Instead of the Phase Doppler Anemometry method used for droplet size measurements earlier in the JIP, a photographic technique was applied in an attempt to include measurement of the larger (non-spherical) droplets. This enabled a more accurate evaluation of the initial droplet size distribution and a much clearer understanding of the droplet morphology. The results showed that the droplet behaviour in the jet is more complex than had been anticipated with the mass distribution dominated by a very small number of large non-spherical droplets. Consequently a large number of spray images were required to evaluate an accurate size distribution.Distributed rainout was measured by weighing the amount of rainout in trays positioned along the jet direction. The rainout results showed a good degree of repeatability and internal consistency. They indicated that an increasing proportion of the released material did not rainout for increasing pressure. Rainout distance also increased with increasing pressure. Evaporation of the liquid was confirmed by temperature measurements, which showed the effect of evaporative cooling.Xylene concentration measurements (up to 1%) were carried out using a direct reading photoionization detector calibrated for xylene (measuring vapour only). For a limited dataset, the accuracy of these measurements was estimated by means of comparison against an alternative more time-consuming concentration method (xylene absorption onto a charcoal filter; measuring both vapour and liquid). The concentration measurements displayed several consistent qualitative features. For example, at a given downstream distance, the peak concentration increases with increasing pressure and nozzle diameter and the vertical height at which the peak is achieved increases. The cross-stream profiles displayed a consistent tendency to increased concentration at the edge of the jet, and the reason for this has not been established.Finally recommendations are provided for potential future work.  相似文献   
317.
An approach to reduce the probability of producing a domino effect in process industry is developed in this work. It is assumed that optimal layouts should include appropriate analysis to reduce risk during the process design stage. The model developed for this approach combines the estimation of probability of damage due to overpressure, proposed by Mingguang and Juncheng (2008), and escalation threshold values defined by Cozzani, Gubinelli, and Salzano (2006). These equations are combined with other typical layout constraints as well as bounding the probability constraint, which has resulted in a highly non-linear MINLP problem. Solving a case study used by other authors provides evidence for reliability of the developed approach. In this way, layouts are designed to reduce the escalation probability yielding safe distributions.  相似文献   
318.
Concerns over public safety and security of a potential liquefied natural gas (LNG) spill have promoted the need for continued improvement of safety measures for LNG facilities. The mitigation techniques have been recognized as one of the areas that require further investigation to determine the public safety impact of an LNG spill. Forced mitigation of LNG vapors using a water curtain system has been proven to be effective in reducing the vapor concentration by enhancing the dispersion. Currently, no engineering criteria for designing an effective water curtain system are available, mainly due to a lack of understanding of the complex droplet–vapor interaction. This work applies computational fluid dynamics (CFD) modeling to evaluate various key design parameters involved in the LNG forced mitigation using an upwards-oriented full-cone water spray. An LNG forced dispersion model based on a Eulerian–Lagrangian approach was applied to solve the physical interactions of the droplet–vapor system by taking into account the various effects of the droplets (discrete phase) on the air–vapor mixture (continuous phase). The effects of different droplet sizes, droplet temperatures, air entrainment rates, and installation configurations of water spray applications on LNG vapor behavior are investigated. Finally, the potential of applying CFD modeling in providing guidance for setting up the design criteria for an effective forced mitigation system as an integrated safety element for LNG facilities is discussed.  相似文献   
319.
Major Accident Hazard (MAH) and Occupational Safety and Health (OSH) are two separated topics in both industrial practice and legislation; recently, interest is increasing toward an integrated risk assessment mainly forced by the tendency to a more efficient safety management system. The present study proposes a semi-quantitative approach to integrate MAH in OSH risk assessment. The two risk types are characterized by opposite features: the OSH analysis is usually task-based and focused on job profiles, while the MAH analysis is space-based and focused on plant characteristics. The basic idea of the proposed approach is to merge spatial information and job profile features in order to improve OSH assessment; thus, a risk index derived by the recent standard ISO 12100 (2010) has been adapted. In detail, the proposed index combines exposure times of each worker at each plant unit – derived from the OSH analysis – with damage areas derived from MAH analysis allowing a quantitative assessment of the MAH risk level for each individual job profile. The model has been tested in a large petrochemical plant; several hypotheses have been developed in order to validate the model. Results have showed the potentiality of the proposed approach in providing a common and coherent representation of both MAH and OSH risks, according to job profiles and plant units.  相似文献   
320.
To quickly and accurately quantify the material release in process units, gas detectors may be placed according to the results of gas dispersion modeling. DNV's PHAST software is one of the most useful and reliable tools for material dispersion modeling. In this software, fluid dispersion is modeled based on the process conditions, the weather conditions and the specifications of the material release point. However, varying weather conditions throughout the year and the exact determination of the release point on the plot plan and the release elevation are problematic; these issues cause the results to be non-exact and non-integrated. Choosing the most appropriate conditions is challenging. In this paper, a scheme was provided to select the most appropriate conditions for gas dispersion modeling. This scheme approaches modeling based on the worst-case scenario (the situation in which the dispersed gas reaches the detector later in comparison to the other cases). Therefore, different weather conditions, release elevations and release points on the plot plan were modeled for an absorber tower of the Gonbadli Dehydration Unit of the Khangiran Refinery. The worst case of each release condition was then chosen. Finally, gas detectors were placed using the gas dispersion modeling results based on the worst-case scenario.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号