首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17494篇
  免费   780篇
  国内免费   2581篇
安全科学   718篇
废物处理   1058篇
环保管理   1850篇
综合类   6310篇
基础理论   4424篇
环境理论   2篇
污染及防治   3113篇
评价与监测   1568篇
社会与环境   1408篇
灾害及防治   404篇
  2024年   40篇
  2023年   168篇
  2022年   491篇
  2021年   425篇
  2020年   450篇
  2019年   345篇
  2018年   1798篇
  2017年   1725篇
  2016年   1599篇
  2015年   614篇
  2014年   608篇
  2013年   736篇
  2012年   1217篇
  2011年   2108篇
  2010年   1358篇
  2009年   1217篇
  2008年   1433篇
  2007年   1761篇
  2006年   528篇
  2005年   364篇
  2004年   248篇
  2003年   275篇
  2002年   315篇
  2001年   187篇
  2000年   198篇
  1999年   126篇
  1998年   90篇
  1997年   88篇
  1996年   83篇
  1995年   59篇
  1994年   54篇
  1993年   33篇
  1992年   35篇
  1991年   17篇
  1990年   12篇
  1989年   8篇
  1988年   9篇
  1987年   3篇
  1986年   3篇
  1985年   2篇
  1984年   13篇
  1983年   8篇
  1981年   2篇
  1935年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
931.
With the environmental carrying capacity reaching its limits and the decreasing margin benefits of traditional production factors, the green transformation and green development through technological innovations has been a major direction for the future development of Chinese industries. However, the characteristics and heterogeneities of various types of industries call for different approaches regarding technological innovations. How to choose the most effective mode of technological innovation according to the characteristics of a certain industry has been a key issue. This paper measures the green total factor productivity of 32 industrial trades using the Slacks Based Measure(SBM)-DDF method. The effects of three innovation modes in the green transformation of industrial industry, including the independent innovation(Ⅱ), the technology introduction(TI), and the government support(GS), are empirically analyzed based on industry heterogeneity. Results indicate that the green total factor productivities of different industries show significant differences if taking into account the energy input and the undesirable output of pollutant emissions. The green total factor productivities of traditional high input,high pollution, and high energy consumption industrial trades were significantly lower than those with obvious green features. The year of 2009 is a leap year for the industrial green transformation in China. For resource-intensive industries, the II and the GS are the important ways to achieve green transformation. For labor-intensive industries, the TI is the best path to achieve green transformation, while for technology-intensive industries, the II is the primary driving force for the promotion of green developments. In addition, the innovation-compensating effect of the current Chinese environmental regulations to the resource-intensive industries has been revealed. Improving the overall scale and the industrial concentration of the industries is also beneficial for the green transformation of the industries.  相似文献   
932.
在水资源约束趋紧的背景下,选取长江三角洲城市群中26个城市2005~2014年的面板数据,运用SBM模型对工业用水效率进行测算,并基于可分解的泰尔指数分析长江三角洲城市群内部工业用水效率的空间差异。结果显示:(1)长江三角洲城市群工业用水效率水平整体偏低,在不考虑与考虑非期望产出的情况下,工业用水效率10a平均值分别为 0.591 8.和 0.519 7;(2)工业用水效率的地区内部差异是造成总差异的主要部分,并且有随时间递增的趋势,其中安徽省对于地区内部差异的贡献率最大,其次为浙江省,江苏省贡献率最低;(3)江苏省各城市工业用水效率虽然差异不大但整体水平较低,而上海市工业用水效率较高并处于稳步上升状态。因此,缩小地区内部差异是实现长江三角洲城市群工业用水效率整体上升的重要途径。  相似文献   
933.
Economic values of water for the main Public Irrigation Schemes in the sub-middle region of the São Francisco River Basin, in northeastern Brazil, are determined in this study using an integration of a global agro-economic land and water use (MAgPIE) with a local economic model (Positive Mathematical Programming). As in the latter, the water values depend on the crops grown, and as Brazilian agriculture is strongly influenced by the global market, we used a regionalized version of the global model adapted to the region in order to simulate the crop land use, which is in turn determined by changes in global demand, trade barriers, and climate. The allocation of sugarcane and fruit crops projected with climate change by the global model, showed an impact on the average yields and on the water costs in the main schemes resulting in changes in the water values locally. The economic values for all schemes in the baseline year were higher than the water prices established for agricultural use in the basin. In the future, these water values will be higher in all the schemes. The highest water values currently and in the future were identified in municipalities with a significant proportion of area growing irrigated sugarcane. Being aware of current water values of each user in a baseline year and in a projected future under global climate and socioeconomic changes, decision makers should improve water allocation policies at local scale, in order to avoid conflicts and unsustainable development in the future.  相似文献   
934.
935.
Small island developing states (SIDS) face multiple threats from anthropogenic climate change, including potential changes in freshwater resource availability. Due to a mismatch in spatial scale between SIDS landforms and the horizontal resolution of global climate models (GCMs), SIDS are mostly unaccounted for in GCMs that are used to make future projections of global climate change and its regional impacts. Specific approaches are required to address this gap between broad-scale model projections and regional, policy-relevant outcomes. Here, we apply a recently developed methodology that circumvents the GCM limitation of coarse resolution in order to project future changes in aridity on small islands. These climate projections are combined with independent population projections associated with shared socioeconomic pathways (SSPs) to evaluate overall changes in freshwater stress in SIDS at warming levels of 1.5 and 2 °C above pre-industrial levels. While we find that future population growth will dominate changes in projected freshwater stress especially toward the end of the century, projected changes in aridity are found to compound freshwater stress for the vast majority of SIDS. For several SIDS, particularly across the Caribbean region, a substantial fraction (~?25%) of the large overall freshwater stress projected under 2 °C at 2030 can be avoided by limiting global warming to 1.5 °C. Our findings add to a growing body of literature on the difference in climate impacts between 1.5 and 2 °C and underscore the need for regionally specific analysis.  相似文献   
936.
This paper tests the hypothesis that relocation of pig production within the EU27 can reduce the external costs of nitrogen (N) pollution. The external cost of pollution by ammonia and nitrate from agriculture in the European Union (EU27) in 2008 was estimated at 61–215 billion € (0.5 to 1.8% of the GDP). Per capita it ranged from more than 1000 € in north-west EU27 to 50 € in Romania. The average contribution of pig production was 15%. Using provincial data (224 NUTS2 regions in EU27), the potential reduction of external N cost by relocation of pig production was estimated at 14 billion € (10% of the total). Regions most eligible for decreasing the pig stock were in western Germany, Flemish region, Denmark, the Netherlands and Bretagne, while Romania is most eligible for increasing pig production. Relocating 20 million pigs (13% of the total EU stock) decreased average external costs per capita from 900 to 785 € in the 13 NUTS2 regions where pigs were removed and increased from 69 to 107 € in 11 regions receiving pigs. A second alternative configuration of pig production was targeted at reducing exceedance of critical N deposition and closing regional nutrient cycles. This configuration relocates pigs within Germany and France, for example from Bretagne to Northern France and from Weser-Ems to Oberbayern. However, total external cost increases due to an increase of health impacts, unless when combined with implementation of best N management practices. Relocation of the pig industry in the EU27 will meet many socio-economic barriers and realisation requires new policy incentives.  相似文献   
937.
Despite recent calls to limit future increases in the global average temperature to well below 2 °C, little is known about how different climatic thresholds will impact human society. Future warming trends have significant global food security implications, particularly for small island developing states (SIDS) that are recognized as being among the most vulnerable to global climate change. In the case of the Caribbean, any significant change in the region’s climate is likely to have significant adverse effects on the agriculture sector. This paper explores the potential biophysical impacts of a +?1.5 °C warming scenario on several economically important crops grown in the Caribbean island of Jamaica. Also, it explores differences to a >?2.0 °C warming scenario, which is more likely, if the current policy agreements cannot be complied with by the international community. We use the ECOCROP niche model to estimate how predicted changes in future climate could affect the growing conditions of several commonly cultivated crops from both future scenarios. We then discuss some key policy considerations for Jamaica’s agriculture sector, specifically related to the challenges posed to future adaptation pathways amidst growing climate uncertainty and complexity. Our model results show that even an increase less than +?1.5 °C is expected to have an overall negative impact on crop suitability and a general reduction in the range of crops available to Jamaican farmers. This observation is instructive as increases above the +?1.5 °C threshold would likely lead to even more irreversible and potentially catastrophic changes to the sustainability of Jamaica’s agriculture sector. The paper concludes by outlining some key considerations for future action, paying keen attention to the policy relevance of a +?1.5 °C temperature limit. Given little room for optimism with respect to the imminent changes that SIDS will need to confront in the near future, broad-based policy engagement by stakeholders in these geographies is paramount, irrespective of the climate warming scenario.  相似文献   
938.
Rapid and unplanned expansion of a city into its eco-sensitive areas like hills, wetlands, and forests is becoming a major concern, particularly in developing countries. Understanding the process and causes of such unplanned urban expansion is of paramount importance for framing sustainable urban development policies. This paper presents a modelling concept that relates urban settlement in such eco-sensitive areas with potential socio-economic, demographic and geographical factors. The model is applied to an Indian city Guwahati, which is experiencing serious environmental degradation due to unplanned urban settlement in its eco-sensitive hilly areas. While topographical and settlement data were derived using satellite data in GIS platform, all other necessary data were collected from relevant government organizations. On validation of the multi-linear regression model, the coefficient of determination and the root mean square error are obtained as 0.938 and 1.7, respectively. Model results show that geographical parameters are less influencing as compared to the other socio-economic and demographic factors. Sensitivity analysis of urban settlements in hills of Guwahati city carried out with respect to the considered factors reveals that land value and free space availability in the surrounding area of a hill are the most sensitive parameters. This indicates that city development plans should give more importance to outward spatial expansion in plain areas with regulated land value and zoning scheme to minimize unauthorized settlement in eco-sensitive hilly areas of Guwahati city.  相似文献   
939.
The Jain tradition of ecological awareness and sustainability has been well documented over the last 25 years, although its roots lie deep in Indian history, specifically in texts such as the Tattvārtha Sūtra and ācārā?ga Sūtra. This traditional body of knowledge includes a long-standing theory and practice of personal, social and environmental sustainability, addressing such views as the interconnectedness of humans and the laws of nature, the interdependence of everything in the universe, the responsibility of humans to conserve and preserve natural resources, the avoidance of wanton and unnecessary waste generation, and a general aversion to mistreating or abusing the environment. These views encapsulate the lifestyles of some ten million people, including both mendicants and laity. Similarly, Maharishi Vedic Science, the systematic exploration and practical application of the Veda and Vedic Literature as taught by Maharishi Mahesh Yogi, makes a compelling case for establishing the unity of human life with nature and for promoting actions which guarantee both the protection of nature and protection by it. The purpose of this paper is to examine the relationship between the principles of sustainability in Jainism and the corresponding viewpoint of Maharishi Vedic Science, including supporting scientific evidence of its application, and to posit their contribution to a sustainable world future.  相似文献   
940.
Drought in the northern part of Cyprus has become a recurrent phenomenon. In the last few decades, Cyprus has experienced significantly severe drought events occurring periodically, and this trend is now continuing. With rainfall distribution varying considerably across the region and frequent drought conditions, the water resources, agriculture, economy and the environment have been adversely affected. This study aims to investigate spatial–temporal characteristic of drought using Standardized Precipitation Index (SPI) at multiple timescales (3, 6 and 12 months). Monthly time series of 36 years (1977–2013) rainfall data from nine weather stations are used to derive SPI values. Based on different drought categories, this study focuses on propagation of drought from one timescale to another and estimating critical rainfall values during moderate, severe and extreme drought conditions. The analysis revealed that there is a strong correlation among different timescales in detecting drought events. On average, 79 and 78% of 3-month timescale drought propagated into 6- and 12-month drought events, respectively, while 90% of 6-month timescale drought events propagated into 12-month drought events. The derived critical rainfall value for extreme droughts over a 12-month timescale was less than 255 mm/year in the town of Alsancak, while for Guzelyurt, a major citrus growing city, this figure was less than 135 mm/year. The results are validated through drought events detected at various regions of the Mediterranean basin and local flood occurrences during the wet periods and decline in water tables at drought seasons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号